مقاله شماره 77: اهمیت سطح در دنیای نانو

asaly

عضو جدید
کاربر ممتاز

اهمیت سطح در دنیای نانو
برای مطالعه‌ی این مقاله هم باید حوصله داشته باشيد و هم به کشف اسرار حاکم بر دنیای نانو علاقه‌مند باشید!
تاکنون مطالب بسیاری را در مورد فناوری نانو مطالعه کرده و شنیده‌اید. اگر دقت کنيد تمامی اين مطالب بیان‌گر کشف و استفاده از خواص جالب و جديد گروهی از مواد است. خواصی که تا چند سال گذشته از وجود آن‌ها بی‌اطلاع بودیم و دستیابی به آنها (به شکلی که امروزه مد نظر ماست) امری محال به نظر می‌رسید. سوالی که پیش می‌آید آن است که چرا تا دیروز به وجود این مواد و این خواص ویژه پی نبرده بودیم و چرا امروزه این مواد با وجود ثابت بودن عدد اتمی (یکسان بودن عنصر) آنها، خواص متفاوتی از خود بروز می‌دهند. در این مجموعه مقالات تلاش می‌کنیم تا با توضیح برخی موارد مهم در تعیین خواص، پاسخی برای این سوالات بیابیم. در این مجموعه مقالات درمی‌یابیم که عوامل متعددی در تعیین خواص مواد نقش دارند و همچنین این عوامل ارتباط تنگاتنگی با یکدیگر دارند. در این مجموعه با برخی محاسبات بسیار ساده مواجه می‌شویم، ممکن است تصور کنید که انجام آنها کسل کننده و حتی بی فایده است، اما با کمی حوصله و انجام این محاسبات ساده، می‌توانید به خوبی تاثیر ابعاد نانو بر ویژگی‌‌های ماده را درک کنید. بنابراین تلاش کنید تا محاسبات را انجام دهید و از این طریق با اصول انجام این محاسبات که در فهم موضوع مورد بحث موثر است، آشنا شوید. همچنین تلاش کنید تا به پرسش‌های مطرح شده، قبل از مطالعه‌ی ادامه‌ی متن، پاسخ دهید. در اولین مقاله از این سری، به بیان برخی عوامل موثر بر خواص مواد می‌پردازیم که از گذشته شناخته شده بودند. برای شروع بحث، پرسیدن این سوال لازم است:

پرسش1: چه عواملی را می‌شناسید که بر خواص مواد تاثیر می‌گذارند؟

قبل از مطالعه‌ی ادامه‌ی متن، تلاش کنید تا پاسخی برای این پرسش بیابید. مواردی را که به عنوان پاسخ می‌یابید، در کنار یکدیگر یاداشت کرده و نحوه‌ی تعیین خواص يک ماده توسط آنها را پیدا کنید. بسيار خوب است اگر بتوانيد ارتباط میان اين عوامل را هم بررسی کنيد.
*
*
*
یکی از مواد بسیار پرکاربرد و مهم در صنایع پیشرفته (مانند صنایع تولید انرژی هسته‏ای)، آب سنگین است. برای آشنا شدن با آب سنگین، لازم است دوتریوم را بشناسيم. شما با اتم هیدروژن آشنا هستید. اتم بسيار کوچکی که ابعادی در حدود 1 آنگستروم دارد. این اتم شامل یک پروتون مستقر در هسته، و یک الکترون است. اکنون تصور کنید که یک نوترون نیز در کنار این پروتون در هسته قرار داشته باشد، در این صورت ماده حاصل چه خواهد بود؟


آنگستروم یکی از واحدهای اندازه‌گیری طول است که مقدار آن برابر با 0.1 نانومتر است. از این واحد برای بیان اندازه اتمها و پیوندهای اتمی ‏استفاده می‌شود.
می‌دانید که عدد اتمی يک عنصر، برابر با تعداد پروتو‏های آن اتم است. بنابراین عدد اتمی ماده جديدی که از افزودن يک نوترون به هيدروژن بدست آورديم، همانند هيدروژن برابر با یک است. اما از آنجایی‌که جرم نوترون تقریبا هم اندازه با پروتون است، عدد جرمی این اتم برابر با دو است. یعنی یک اتم هیدروژن با جرمی تقریبا دو برابر. به این اتم، دوتریوم می‌گوییم و آن را به عنوان یکی از ایزوتوپ‌های هیدروژن می‌شناسیم. در صورتی‏که این اتم با اکسیژن ترکیب شود، آب سنگین به دست می‌آید. بنابراین علاوه بر تعداد پروتون‌ها و عدد اتمی، تعداد نوترون‌های اتم‌ها و عدد جرمی آنها نیز در تعیین خواص آنها شرکت دارند.


ایزوتوپ‌ها اتم‌هایی هستند که اعداد اتمی (تعداد پروتون) برابر با یکدیگر داشته، اما به دلیل وجود اختلاف در تعداد نوترون‌هایشان، اعداد جرمی (مجموع تعداد نوترون و پروتون) متفاوتی دارند

علاوه بر این دو مورد، بر اساس مطالبی که در مورد واکنش‌های شیمیایی و یا ساختار اتم‌ها (مدل اتمی) در درس شيمی خوانده‌ايم، می‌دانیم که حالت ترازهای انرژی الکترون‌های اطراف هر اتم و همچنین تعداد الکترون‌‌های لایه‌ی آخر آن نیز در تعیین خواص آن اتم یا ماده تاثیر گذار است. این ویژگی می‌تواند نقشی تعیین کننده در ساز و کار ترکیب شدن آن ماده (خواص شیمیایی) داشته باشد. برای مثال خواص یک یون فلزی با اتم آن فلز متفاوت است.


دو دسته یون وجود دارد. کاتیون‌ها اتم‌هایی هستند که الکترون آنها جدا شده و در نتیجه دارای بار مثبت هستند. آنیون‌ها نیز اتم‌هایی هستند که با گرفتن تعدادی الکترون، دارای بار منفی شده‌اند

تاکنون با نقش سه عامل عدد اتمی، عدد جرمی و آرایش الکترونی ماده در تعیین خواص ماده آشنا شده‌اید. اما موارد ديگری نيز وجود دارد.

شکل (1)- ساختار بلوری نمک طعام، در این تصویر گلوله‌های بنفش بیانگر اتم‌های سدیم و گلوله‌های سبز بیانگر اتم‌های کلر هستند.
این ساختار در قالب بک شبکه‌ی
مکعبی شکل گرفته است



همه‌ی ما با ساختار نمک طعام (NaCl) آشنا هستیم (شکل 1) و شکل مکعبی دانه‌های نمک را در کتاب شيمی دیده‌ایم. برخی از ما می‌دانيم که نمی‌توان برای نمک یک مولکول در نظر گرفت. بلکه نمک به شکل یک جامد بلورین است که از قرار گرفتن منظم اتم‌های Na و Cl در کنار یکدیگر به وجود آمده است. به این طرز قرار گرفتن اتم‌های تشکیل دهنده‌ی نمک در کنار یکدیگر، یک شبکه بلوری می‌گوییم. علاوه بر ترکیباتی مثل نمک، عناصر خالص مانند آهن (Fe) نیز می‌توانند در این ساختارهای منظم بلورین قرار بگیرند. آهن یک فلز چند شکلی است. به این معنی که در فشار یک اتمسفر با افزایش دما، شبکه‌ی بلوری آن تغییر می‌کند. آهن در دماهای بین صفر مطلق تا 912 درجه‏ی سانتی گراد (آهن آلفا یا فریت) ساختار متفاوتی با آهن در گستره‌ی دمایی بین 912 تا 1394 درجه سانتی گراد (آهن گاما یا آستنیت) دارد. این تفاوت در شکل 2 نشان داده شده است.



آهن‌های آلفا و گاما خواص متفاوتی از یکدیگر دارند. بنابراین می‌توان گفت که یکی دیگر از عوامل موثر بر خواص ماده، ساختار بلوری آن است
 
آخرین ویرایش:

asaly

عضو جدید
کاربر ممتاز


در قسمت قبلی آموختیم که عوامل مختلفی در تعیین خواص و رفتار مواد نقش دارند. از این عوامل به عدد اتمی، عدد جرمی، آرایش الکترونی، ساختار بلوری و شرایط محیطی اشاره نمودیم. علاوه بر این عوامل، موارد دیگری نیز وجود دارند که به مقدار سطح ماده بستگی زیادی دارند. اکنون به ادامه‌ی این بحث می‌پردازیم.
سطح در فناوری نانو اهمیت بسیار بالایی دارد و همه‌جا از اثر سطح یا نسبت سطح به حجم صحبت می‌شود. در این مقاله، ابتدا در قالب مثال‌هایی اهمیت سطح را بیان می‌کنیم و تا حدودی تاثیر مقدار سطح را بر خواص ماده نشان می‌دهیم.
همان‌طور که می‌دانید، واکنش‌های شیمیایی در محلی اتفاق می‌افتند که ماده با محیط اطراف در تماس است. این محل همان سطح ماده است. واکنش از این منطقه شروع شده و سپس تحت شرایطی به عمق نفوذ می‌کند. برای بررسی بیشتر، اکسید شدن آلومینیوم را در نظر بگیرید. یک قطعه‌ی آلومینیومی سطحی کدر دارد که در صورت سمباده زدن آن، لایه‌های زیرین که بسیار شفاف هستند، پدیدار می‌شوند. این لایه‌های بسیار شفاف، همان آلومینیوم می‌باشند. اما این سطح براق به سرعت به سطحی کدر و مات تبدیل می‌شود. بررسی‌ها نشان داده است که، این لایه‌ی بسیار نازک و کدر، ترکیبی از اکسیژن و آلومینیوم است. آلومینا یا اکسید آلومینیوم (Al2O3) یک ماده‌ی سرامیکی بسیار سخت است که به شکل یک لایه‌ی پیوسته، روی سطح آلومینیوم را می‌پوشاند. این لایه از تماس لایه‌های زیرین (که از آلومینیوم هستند) با هوای اطراف جلوگیری می‌کند. بنابراین، واکنش اکسایش آلومینیوم ادامه پیدا نمی‌کند و بقیه‌ی ماده از اکسید شدن حفظ می‌گردد.
پرسش :
طبق مطالب بیان شده، با تشکیل لایه‌ی اکسید روی ِ آلومینیوم، این ماده از نظر شیمیایی غیرفعال شده، و واکنش متوقف می‌شود. به نظر شما این پدیده دارای چه مزیت‌ها و مضراتی است؟
اکسید شدن آهن با اکسید شدن آلومینیوم تفاوت دارد. اگر دقت کرده باشید، زنگ آهن، ماده‌ای است قرمز رنگ که به راحتی می‌شکند و می‌ریزد. این ماده به راحتی از روی آهن جدا می‌شود و بنابراین، اکسیژن به قسمت‌های داخلی و به زیر لایه‌ی اکسیدی نفوذ کرده و واکنش اکسایش ادامه میابد. به گونه‌ای که ادامه‌ی روند این واکنش منجر به تخریب کامل قسمتی از قطعه‌ی فولادی شده و در نهایت، موجب انهدام آن می‌شود.
بنابراین، اگر بخواهیم به دنبال ادامه دادن یک واکنش باشیم، باید راهی برای نفوذ به درون آن ماده بیابیم. یک راه، انتقال مواد از درون حجم ماده به سطح آن است. برای این کار (دسترسی به قسمت‌های داخلی حجم ماده) می‌توانیم مسیری را درون ماده تعبیه کنیم. این کار را می‌توان با ایجاد حفراتی که به هم متصل هستند و تا سطح ماده ادامه دارند انجام دهیم (شکل 1). به این مواد که ساختاری اسفنج مانند دارند، مواد متخلخل یا فوم می‌گوییم. در طبیعت نیز می‌توان مواد متخلخل را به وفور مشاهده کرد. زئولیت‌ها موادی از این دسته هستند. از مواد متخلخل مصنوعی نیز می‌توان به فوم‌های فلزی اشاره نمود که امروزه کاربردهای بسیاری در صنایع دارند. از مواد متخلخل می‌توان برای کاتالیز واکنش‌های شیمیایی، *****های مایعات و *****های هوا استفاده نمود. بنابراین، هرچه اتم‌های بیشتری در سطح باشند، واکنش‌های شیمیایی با سهولت بیشتری رخ می‌دهند. این رویداد برخی موارد مفید، و در برخی موارد مضر است.


شکل 1. طرحی از مواد متخلخل

پرسش :
آیا می‌توانید کاربردهای واکنش‌های شیمیایی مواد را نام ببرید؟ چه مواقعی نیاز داریم تا از واکنش‌های شیمیایی مواد جلوگیری کنیم؟
یک راه دیگر، کوچک‌تر کردن اندازه‌ی مواد واکنش‌دهنده است. برای بیان این موضوع، توضیحات را در قالب یک مثال ادامه می‌دهیم. ممکن است مطالبی را در رابطه با سوخت‌های جامد شنیده باشید. سوخت‌های جامد مانند پودر آلومینیوم در برخی کاربردهای خاص مورد استفاده قرار می‌گیرند. یکی از این کاربردها، استفاده به عنوان سوخت موشک است. همان‌گونه که قبلاً نیز گفته شد، آلومینیوم واکنش‌پذیری بالایی دارد و به سرعت اکسید می‌شود. پودرهای ریز آلومینیوم بر اثر واکنش با اکسیژن، به شدت آتش می‌گیرند و گرمای زیادی آزاد می‌کنند.
سوخت‌های جامد یا Solid Fuel به انواع مواد جامدی گفته می‌شود که به عنوان سوخت استفاده می‌شوند، و در اثر اشتعال، گرما و انرژی آزاد می‌کنند. مانند: زغال چوب و زغال سنگ. یکی از کاربردهای این نوع سوخت، استفاده از آن به عنوان سوخت موشک می‌باشد.

پرسش :
به نظر شما اندازه‌ی پودرهای آلومینیوم چه تاثیری بر میزان انرژی آزاد شده و در نتیجه بازده سوخت دارد؟

برای پاسخ به این پرسش، شکل 2 را در نظر بگیرید. در این شکل فرض کرده‌ایم که پودر آلومینیوم به شکل کره است. در صورتی که این ذره‌ی پودر در معرض اکسیژن قرار بگیرید و واکنش دهد، یک لایه از اکسید آلومینیوم روی آن قرار می‌گیرد. با توجه به آنچه در مورد اکسید آلومینیوم گفته شد، این لایه‌ی تشکیل شده، از ادامه‌ی واکنش اکسایش جلوگیری می‌کند و مقدار زیادی از قسمت‌های داخلی این ذره‌ی پودری، از واکنش در امان می‌ماند. اما در صورتی‌که اندازه‌ی این ذره کمتر باشد، مقدار بسیار کمتری از آن دست نخورده باقی می‌ماند. بنابراین، مقدار بیشتری از سوخت جامد مصرف شده و بازده بیشتر می‌شود.


شکل 2. مقایسه‌ی بین اکسید شدن ذرات آلومینیوم با اندازه‌های مختلف

علاوه بر این مثال، اندازه‌ی ذرات مورد استفاده در صنایع شیمیایی (اندازه‌ی ذرات کاتالیست)، ریخته‌گری (اندازه‌ی افزودنی‌ها به مذاب) و صنایع کامپوزیت (اندازه‌ی ذرات تقویت کننده) از اهمیت بالایی برخوردار است.
به طور خلاصه، برای در دسترس قرار دادن مقدار بیشتری از یک ماده، یا باید آن را به شکل متخلخل داشته باشیم، و یا اندازه‌ی ذرات آن را کوچک‌تر کنیم. در هر دو روی‌کرد، در واقع؛ مقدار بیشتری از ماده روی سطح قرار می‌گیرد، و یا می‌توان گفت که نسبت سطح به حجم افزایش یافته است. اهمیت سطح تنها در واکنش‌های شیمیایی مطرح نیست، بلکه برهم‌کنش‌های فیزیکی و مکانیکی ماده با محیط نیز از طریق سطح انجام می‌گیرد. از این موارد می‌توان به پدیده‌های اصطکاک و انتقال حرارت اشاره نمود. بنابراین، تغییر مقدار سطح ماده می‌تواند بر این پدیده‌ها تاثیر بگذارد.
در پایان این مقاله و برای شروع مقاله‌ی بعدی، چند سوال مهم را مطرح می‌کنیم.
پرسش :
آیا همیشه با کوچکتر شدن اندازه‌ی ماده، خواص آن تغییر می‌کند؟ این خواص شامل چه مواردی هستند؟
همان‌گونه که می‌دانید، در ابعاد نانو، خواص نوری، الکتریکی، مغناطیسی و شیمیایی مواد به شدت تغییر می‌کند. برای مثال، نقطه‌ی ذوب ذرات 50 نانومتری طلا با نقطه‌ی ذوب ذرات 10 نانومتری طلا بسیار متفاوت است. رنگ نانوذرات طلا نیز با یکدیگر متفاوت است. اما اگر شمش‌های بزرگ طلا را به قسمت‌های چند میلی متری تقسیم کنیم، نقطه‌ی ذوب‌شان تغییر نمی‌کند و هم‌چنان به رنگ زرد (طلایی) دیده می‌شوند. چگونه این واقعیت را توجیه می‌کنید؟ آیا ابعاد نانومتر، محدوده‌ی خاصی است که در آن اتفاقات ویژه‌ای می‌افتد؟
 

asaly

عضو جدید
کاربر ممتاز


در قسمت قبل آموختیم که راه‌هایی برای افزایش سطح ماده و آوردن اتم‌های آن از داخل حجم به سطح وجود دارد. هم‌چنین آموختیم که با افزایش سطح ماده، خواص آن تغییر می‌کند. درک این‌که چرا واکنش‌پذیری شیمیایی ماده با افزایش سطح آن بیش‌تر می‌شود، بسیار ساده است. اما این سوال پیش می‌آید که، چرا این موضوع در ابعاد نانومتری اهمیت بسیار بالایی پیدا کرده است و چرا خواص مختلف ماده در این ابعاد دست‌خوش تحولات زیادی می‌شود؟ چنانچه ماده‌ای با مقیاس چند ده متری را کوچکتر کرده و به ابعاد میلی‌متری برسانیم، هیچ تغییری در نقطه‌ی ذوب، رنگ و خواص مغناطیسی آن ایجاد نمی‌شود. اما این تغییر در هنگام کوچک‌تر کردن ماده تا ابعاد نانومتری دیده می‌شود.
کلید حل این مساله در این جاست که تعداد اتم‌های سطحی در مواد با مقیاس‌های بزرگ‌تر از نانومتر، بسیار ناچیز است، اما با ورود به دنیای نانومتری، مقدار این اتم‌ها نسبت به کل اتم‌های ماده، بسیار زیاد می‌شود. برای بررسی دقیق‌تر و درک این موضوع، به جدول 1 دقت کنید.
جدول 1. درصد اتم‌های سطحی خوشه‌های اتمی با تعداد پوسته‌های متفاوت

جدول 1. درصد اتم‌های سطحی خوشه‌های اتمی با تعداد پوسته‌های متفاوت​
تعداد پوسته‏ های خوشهشکل خوشهتعداد اتم‌های سطحیتعداد کل اتم‏هادرصد اتم‏های سطحی
يک پوسته
121392
دو پوسته
425576
سه پوسته
9214763
چهار پوسته
16230962
پنج پوسته
25256145
هفت پوسته
492141535

در این جدول، تعداد پوسته‌ها، شکل خوشه، تعداد اتم‌های سطحی، تعداد کل اتم‌ها و درصد اتم‌های سطحی مربوط به هر خوشه آورده شده است. این خوشه‌ها در متراکم‌ترین حالت ممکن در نظر گرفته شده‌اند. مشاهده می‌شود در حالتی که خوشه‌ی اتمی از یک پوسته تشکیل شده باشد، 92% اتم‌های آن در سطح قرار دارند. اگر قطر هر اتم را 5 آنگستروم در نظر بگیریم، قطر این خوشه برابر با nm1.5 می‌باشد. در حالت سه پوسته‌ای، و با قطر خوشه برابر با nm3.5، معادل 63% از اتم‌ها در سطح قرار گرفته‌اند. یعنی با افزایش اندازه‌ی ذرات از nm1.5 به nm3.5، از درصد اتم‌های سطحی به مقدار 29% کاسته شده است. برای مقایسه، این تغییر را در هنگام گذار از حالت پنج پوسته‌ای (قطر خوشه برابر با nm5.5) به حالت هفت پوسته‌ای (قطر خوشه برابر با nm7.5) در نظر بگیرید. مقدار اتم‌های سطحی با کاهش 10% از مقدار 45% به 35% می‌رسد. بنابراین؛ هرچه اندازه ذرات کوچک‌تر باشد، تاثیر کاهش اندازه ذرات بر مقدار اتم‌های سطحی بیش‌تر می‌شود. با یک محاسبه‌ی ساده متوجه می‌شوید که در موادی با ابعاد میکرومتر و متر، مقدار اتم‌های سطحی نسبت به اتم‌های کل ِ ماده، بسیار ناچیز و تقریبا برابر با صفر است. بنابراین، تاثیر این اتم‌ها بر خواص ماده بسیار ناچیز است. اما در مقیاس‌های نانومتری، درصد این اتم‌ها بسیار زیاد است و می‌توانند نقشی تعیین کننده در خواص مواد داشته باشند. به نظر می‌رسد عاملی که بسیاری از خواص نانومواد را کنترل می‌کند، رفتار اتم‌های سطحی و مقدار آنهاست. در اینجا سوالی را مطرح می‌کنیم و در ادامه، به توضیح آن می‌پردازیم.
پرسش :
در مواد بزرگ‌تر از نانومتر، تعداد اتم‌های سطحی ماده ناچیز بوده و نقش آنها در تعیین خواص مواد نادیده گرفته می‌شد. اما با کاهش اندازه‌ی ذرات و افزایش نسبت اتم‌های سطحی، نقش آنها پررنگ‌تر شده و خواص مواد دچار دگرگونی می‌شود. سوالی که پیش می‌آید این است که: اتم‌های سطحی چه ویژگی‌های متفاوتی از اتم‌های درون حجم ماده دارند؟ در حالی‌که از نظر علم شیمی، از جنس همان اتم‌های داخل حجم ماده می‌باشند. آیا محل قرار گرفتن یک اتم در ماده می‌تواند بر خواص و رفتار آن تاثیرگذار باشد؟
همان‌طوری که می‌دانید، در یک ماده‌ی جامد، هر اتم در محل مشخصی نسبت به دیگر مواد قرار گرفته است. در مواد بلوری، با توجه به جنس ماده، فواصل بین اتم‌ها کاملا قابل محاسبه و مشخص هستند. در اطراف هر یک از این اتم‌ها، تعداد مشخصی اتم دیگر با فواصل معین قرار گرفته است. این اتم با برخی از اتم‌های اطراف که کمترین فاصله را با آن دارند، در ارتباط مستقیم است. طبق تعریف، تعداد این اتم‌ها را عدد هم‌سایگی، عدد هم‌آرایی یا عدد کوئوردیناسیون می‌گوییم.
عدد کوئوردیناسیون که برای ساختارهای بلوری به کار می‌رود، عبارت است از تعداد اتم‌هایی که نزدیک‌ترین فاصله را با یک اتم دارند. به طور مثال، این عدد برای اتم سدیم در بلور نمک طعام، 6 می‌باشد که نشان می‌دهد هر اتم سدیم، توسط 6 اتم کلر احاطه شده است.

در بلور نمک طعام (شکل 1) عدد هم‌سایگی برای اتم‌های سدیم و کلر برابر با 6 می‌باشد. اما نکته‌ای وجود دارد که باید به آن توجه کرد. یک بلور نمک طعام، اندازه‌ی محدودی دارد. یک وجه این بلور را در نظر بگیرید، به نظر شما تعداد نزدیک‌ترین همسایه‌های اتم های موجود روی این سطح، برابر با 6 است؟
همان‌طور که می‌دانید، این اتم‌ها تنها از یک طرف با دیگر اتم‌های بلور در ارتباط هستند. اگر یک بلور نمک طعام را در حالت کاملا ایده‌آل و کامل (بدون نقص) در نظر بگیریم، نزدیک‌ترین هم‌سایه‌های اتم مستقر بر روی وجه، برابر با 5، برای اتم مستقر بر روی یال، برابر با 4 و برای اتم موجود در رأس این مکعب، برابر با 3 می‌باشد (شکل 1).



شکل 1. بلور نمک طعام
بنابراین، در مسیر رسیدن به پاسخ پرسش ، به این نتیجه رسیدیم که عدد هم‌سایگی اتم‌های سطحی ماده با دیگر اتم‌های آن متفاوت است.
 
آخرین ویرایش:

Similar threads

بالا