تولید الیاف کربن از قیر

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
با سلام


الیاف کربن یکی از گران قیمت ترین الیاف جهان هستند،
فناوری تولید این الیاف یکی از پیشرفته ترین فناوریهای جهان میباشد
و کاربرد ان روز به روز در حال افزایش است و پیش بینی میشود این الیاف
در اینده بخش عمده ای از کاربردهای اهن و فولاد به خصوص در سازه های ساختمانی را بگیرند.

تولید الیاف کربن به چند رشته مهم مهندسی مربوط میشود:

1- مهندسی شیمی
2- مهندسی نساجی
3- مهندسی پلیمر
4- مهندسی مواد و متالورژی
و غیره ....

از انجائی که مهندسی شیمی در بین سایر رشته های تقریبا رشته ای مادر برای تولید الیاف کربن است
و همچنین به دلیل اینکه در تاپیکهای مختلف انجمنهای سایت مطالب جسته گریخته ای در این زمینه بود
لذا این تاپیک را ایجاد کردم تا مطالب مربوطه را گرد آوری نمایم.

همچنین از انجائی که به صرفه ترین روش تولید الیاف کربن از قیر میباشد لذا تمرکز خود را روی تولید الیاف کربن از قیر میگذاریم.

اهمیت استفاده از قیر به این جهت است که ارزان ترین ماده حاصل از نفت است
و همچنین از مواد حاصل از ضایعات پالایشگاهی که در کشور به وفور به قیمت نازل یافت میشوند میتوان تولید کرد.

استفاده از پسماندها به خصوص پسماندها و ضایعات پالایشگاهی برای تولید الیاف کربن میتواند یک حرکت مهمی باشد که
از یک سو منجر به تولید فراورده ای با ارزش و فناوری بالا میباشد و از سوی دیگر پسماندها و ضایعات پالایشگاهی را بعنوان مواد اولیه استفاده کرده
و در کاهش الودگی محیط زیست موثر خواهد بود.

و در نهایت بعد از یک دوره گرد اوری مطالب به تهیه طرح توجیهی و تدوین دانش فنی ان خواهیم پرداخت.
 
آخرین ویرایش:

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
اگرچه اكثر الیاف مورد استفاده در صنعت كامپوزیت از جنس شیشه می‌باشد ولی مدول آن نسبتا پایین است. در سالهای پیش تلاشهای زیادی انجام گرفت تا تقویت كننده‌های جدیدی با تبدیل حرارتی الیاف آلی به الیاف كربن ساخته شود.
الیاف حاصل به سرعت كاربرد وسیعی در كامپوزیتهای فنولیكی به منظور استفاده در عایقهای فداشونده در صنایع نظامی پیدا كرد. مشخصه الیاف كربن، سبكی، استحكام و سفتی بالا می‌باشد. همه انواع الیاف كربن از پیرولیز الیاف آلی در یك محیط خنثی بدست می آید.
● سه منبع مهم عمده برای ساخت الیاف كربن وجود دارد:
▪ پلی اكریلونیتریل (pan) رایون و قیر
▪ كوپلیمر متیل اكریلات و ایتاكونیك اسید
▪ اكسیداسیون الیاف اكریلیك، به منظور تثبیت شكل الیاف به هنگام فرآیند كربنیزه كردن است.
این عمل در اتمسفر اكسیژن و دمای
سپس الیاف اكسید شده در یك محیط خنثی كربنیزه می‌شوند. و در نهایت الیاف كربنیزه وارد مرحله گرافیته كردن می‌شوند. این مرحله نیز در مرحله خنثی و در دمای حدود ۴۰۰تاشرایط مورد بحث در طول فرآیند پلیمریزاسیون تا ساختار گرافیتی، به دقت انتخاب و كنترل می‌شوند. در طول این فرآیند عناصر غیر كربنی بصورت گاز خارج شده، اجزاء كربنی باقی می‌مانند. مهمترین شكل الیاف كربن، پارچه است كه در بافتهای مختلف وجود دارد.
● این شكلها عبارتند از:
۱) رشته‌های پیوسته برای فرایندهای، رشته پیچی
در ابتدا دو نوع الیاف كربن با پایه pan وجود داشت كه استحكام و مدول آنها با هم تفاوت داشت:
الیاف كربن با استحكام بالا (strength ( Highیا HSكه از فرآورش در دمای OC ۱۵۰۰ بدست می‌آمد و بعنوان نوع دو درجه‌بندی می‌شد.
با افزایش دمای فرآورش، مدول نیز افزایش می‌یافت و نوع مدول بالای این الیاف (Modulus High ) یا HM كه نوع یك درجه بندی می‌شد در دمای بالاتر ازدو هزار و پانصد درجه تولید می‌شد.
با اعمال كمی كشش و افزایش آرایش یافتگی و با كاهش قطر الیاف از ۷ به ۵ میكرومتر، استحكام و مدول الیاف افزایش می‌یابد. این الیاف، الیاف با مدول متوسط (modulus Intermediate) یا IM نام دارد. در جدول زیر برخی خواص این الیاف مشاهده می‌شود.
pitch)itaconic ) یك ماده اولیه تولید الیاف كربن می‌باشد. این ماده در یك محیط آبی سنتز شده و با *****اسیون جدا می‌شود. سپس كوپلیمر حاصل، با سرعت چرخش و كشش كنترل شده، به روش ریسندگی مرطوب تبدیل به لیف می‌شود. بدینوسیله میزان آرایش الیاف را كنترل می‌كنند و هرچه بیشتر باشد مدول لیف نهایی بالاتر است.
مراحل تولید الیاف كربن در این روش عبارتند از :
۱) كوپلیمریزاسیون، اكسیداسیون، كربنیزه كردن و گرافیته كردنc ۲۰۰ انجام می‌شود. این كار اجازه می‌دهد آرایش القا شده به هنگام كشش در الیاف حفظ شود.c ۲۵۰۰ انجام می‌گیرد.filamant winding )، پلتروژن و فرآیند پاشش رزین (spray up)
۲) پیش آغشته (prepreg) تك جهته برای لایه گذاری
۳) الیاف خرد برای تزریق یا قالبگیری فشاری
۴‌) ‌ نوار پیوسته برای پلتروژن
۵) پارچه بافته برای قالبگیری انتقال رزین (RTM) یا لایه گذاری
دو نوع مختلف الیاف كربن در شكل دیده می‌شود: الیاف كربن تولید شده، ذاتا چسبندگی كافی به پلیمرها ندارند و اگر به همان صورت استفاده شوند، خواص تقویت كنندگی خوبی نشان نشان نمی‌دهند. بنابراین اصلاح سطح یك مرحله ضروری در آماده سازی الیاف می‌باشد.
روشهای مختلفی برای اصلاح سطح الیاف كربن وجود دارد، ولی معمولا اكسیداسیون آنودیك در یك الكترولیت آبی مانند بی كربنات آمونیم، ترجیح داده می‌شود. اكسیداسیون پلاسما نیز بكار می‌رود ولی به لحاظ تجاری رایج نشده است.
معمولاَ الیاف كربن موجود در بازار اصلاح شده است ولی در موارد خاص می‌توان الیاف بدون اصلاح سطح نیز تهیه كرد.



منبع: http://www.www.www.iran-eng.ir/showthread.php/14696
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
[h=2]استفاده از الیاف كربن در كاربردهای دریایی نفت و گاز [/h]


برایان اسپنسر، نماینده شركت اسپنسر در كالیفرنیا، روی استفاده واقعی و بالقوه از الیاف كربن در كاربردهای دریایی نفت و گاز كار می كند. استفاده از كامپوزیت ها در كاربردهای دریایی نفت و گاز سال هاست كه مورد بحث بوده است و در بازار این محصولات برای كامپوزیت ها پتانسیل قابل توجهی وجود دارد. با این وجود، آقای اسپنسر یادآور شد كه صنعت اكتشاف نفت با چالش های متعددی روبرو است كه عبارتند از : آشنایی با فلز، هزینه و خطر بالای اكتشاف، محیط خشن، لوازم بازرسی داخلی از تجهیزات و فاصله زیاد از زیر ساخت در اقیانوس.
با این وجود، انگیزه های فراوانی برای استفاده از كامپوزیت ها وجود دارد كه می توان به سبكی، مقاومت در برابر خوردگی، مقاومت در برابر خستگی، امكان جازنی دستگاه ها، عایق بودن نسبت به گرما و رطوبت پذیری زیاد اشاره كرد. پتانسیل استفاده از الیاف كربن در سازه های اكتشافی شامل: 45 تا 50 پاوند/فوت در دستگاه های حفاری، 10 تا 12 پاوند/فوت در دستگاههای تولید، 6 تا 7 پاوند/فوت در خطوط اكتشاف و استخراج، 2 تا 5 پاوند/فوت در خطوط اضطراری (سرویس رسانی در محل) و 16 تا 17 پاوند/فوت در ریسمانی به قطر 270 میلیمتر می باشد. آقای اسپنسر گفت: "یك سكوی آب عمیق، حداكثر بیش از 18/3 میلیون كیلوگرم الیاف كربن مصرف می كند".
آقای اسپنسر به كاربرد الیاف كربن در مخازن فشار و توربین های بادی اشاره كرد كه در تعداد محدودی از توربین های ذخیره انرژی باد از این الیاف استفاده می شود. به گفته وی در یك توربین از 500 كیلوگرم الیاف كربن استفاده می شود. استفاده از الیاف كربن در اكتشاف و ذخیره نفت و گاز پیشرفت قابل توجهی داشته است كه در اینجا به دو مورد آن اشاره می شود: از سال 2001 یك دكل حفاری كامپوزیتی در دریای جنوب مورد بهره برداری قرار گرفته است، به زودی وزارت انرژی آمریكا پروژه حفاری در آب های عمیق را با استفاده از كامپوزیت به عهده می گیرد.
دستاوردهای استفاده از الیاف كربن در اكتشاف و ذخیره شامل مواد ذیل است:
1- دكل حفاری كامپوزیتی در دریای شمال كه از سال 2001 خدمات رسانی كرده است.
2- به زودی سازمان انرژی آمریكا پروژه حفاری در آب های عمیق را با استفاده از كامپوزیت به عهده می گیرد.
3- یك پروژه كامپوزیتی سرویس رسانی در محل در دست اقدام است.
4- آیین نامه استفاده بیشتر از توربین های كامپوزیتی به تصویب رسیده است.

منبع: http://www.www.www.iran-eng.ir/showthread.php/245867
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
الياف و كامپوزيت های تقويت شده با آن ها

مروری بر الياف و كامپوزيت های تقويت شده با آن ها

الياف كوارتز:
الياف كوارتز (سيليس فيوز شده ی خالص) تا دمای ۱۰۵۰ درجه سانتيگراد و در زمانهای كوتاه تا ۱۲۵۰ درجه سانتيگراد قابل استفاده اند . حال آنكه الياف شيشه تا ۷۶۰ درجه سانتيگراد كاربرد دارند . كوارتز در برابر رادار نسبت به شيشه شفاف تر است و شفافيت آن در بسامدهای بالا نيز افزايش می يابد . در ضمن چگالی كمتری از شيشه دارد . كوارتز از نظر شيميائی پايدارتر است و مقاومت الكتريكی بالای آن باعث می شود كه برای كاربردهای استتاری (صنايع نظامی) ايده آل باشد .
از كاربردهای الياف كوارتز به موارد زير می توان اشاره كرد : عايق حرارتی ، لوازم ورزشی ، ساينده ها ، محافظ رادار و كابل های ضد آتش ، بهای الياف كوارتز تقريباً بين ۱۲۰ تا ۳۰۰ دلار بر كيلوگرم است . در كاربردهائی چون محافظ رادار هواپيما ـ كه در معرض برخورد ذرات تگرگ و غيره هستند ـ الياف كوارتز را به خاطر مقاومت به ضربه ی بالا به كار می برند و اين امر مايه ی كاهش شديد هزينه های جايگزينی می شود .
الياف بازالت:
الياف پيوسته بازالت در دهه ۸۰ ميلادی در شوروی سابق گسترش يافته اما تا كنون كاربرد آنها به صنايع نظامی محدود شده است . در مقايسه با الياف شيشه ، اين الياف دمای كابری بيشتری برابر با ۱۰۱۰ درجه سانتی گراد ، سفتی بالاتر ، مقاومت بهتر در برابر قليائی ها و استحكامی شبيه به S_glass از خود نشـان می دهند . به خاطر مقاومت بـازالت در برابر قليائی ها ، امكان تقويت بتن با آن مد نظر قرار گرفته است .روش توليد الياف بازالت همانند الياف شيشه است ولی ماده اوليه آن سنگ های بازالتی است . هم اكنون بهای آن حدود ۶ تا ۱۰ دلار بر كيلوگرم است .
الياف كربــن:
الياف كربن عمومی ترين الياف در كامپوزيت های با كارآئی بالا هستند . الياف كربن از پيروليز يك ماده آلی ساخته می شوند ، بدين ترتيب ۹۲ درصد يا بيشتر از ماده آلی تبديل به كربن خواهد شد . سپس عمليات حرارتی با دمای بسيار بالائی روی الياف صورت می گيرد تا الياف بسيار قوی و سفتی توليد شود . از مواد اوليه آلی ، پلی اكريلو نيتريل (PAN) ، قير (Pitch) و رايون (Rayon) را می توان نام برد . رايون جزو قابل دسترس ترين مواد اوليه الياف كربن است ، اما به عمليات حرارتی با دمای بسيار بالائی نياز دارد كه بهای تمام شده محصول نهائی را افزايش می دهد . امروزه پلی اكريلو نيتريل و قير جايگزين رايون شده اند . محصول بدست آمده از اين مواد ، با نام الياف گرافيتی (در آمريكا) يا الياف كربنی (در اروپا) شناخته می شوند . استحكام و سفتی الياف كربن بسيار بالاست . اختلاف در ويژگی های الياف ، از شرائط عمليات حرارتی و نوع ماده اوليه ناشی می شود . استحكام الياف حاصل از PAN در محدوده ی خوب تا عالی (۶۸۹۴/۷Mpa) با سفتی تـا (Mpa ۶۲۰۵۲۸/۲) تغيير مي كنند .
الياف حاصل از قير ممكن است سفتی تا (Mpa ۹۶۵۲۶۶) داشته باشند . مدول كششی (سفتی) الياف كربن معمولا" به صورت كم (۳۳-۳۵ Msi) ، متوسط (۴۰-۵۰ Msi) ، بالا (۵۰-۷۰ Msi) يا بسيار زياد (۷۰-۱۷۰ Msi) بيان می شود .الياف با سفتی بالا در جهت طولی ضرايب انبساط حرارتی كم يا منفی دارند . با وجود اين ، الياف با سفتی خيلی بالا به عمليات حرارتی دما بالا (۲۷۶۰ درجه سانتی گراد) نياز دارند و بنابراين بسيار گران هستند . اما به خاطر برخی از ويژگی های منحصر به فرد ، كاربردهای روزافزونی در كامپوزيت های با كارآئی بالا پيــدا كرده اند . مقاومت به خستگی آن ها همانند مقاومت شيميائی شان فوق العــاده است .ويژگی های فشاری خوبـی دارند و هم چنين ويژگی های آن ها در جهاتی غير از جهت اصلی الياف مناسب است . هدايت حرارتی بالائی دارند و انباسط حرارتی آن ها به گونه ای است كه اجازه طراحی
۱۹
سازه هائی را با انبساط كم و يا حتی انبساط صفر می دهد . هم چنين ويژگی های اصطكاكی (سايشی) عالی دارند . با وجود اين كه الياف كربن به طور قابل توجهی گران تر از الياف شيشه اند ، در بيشتر كاربردها، تركيب مناسبی از ويژگی های مورد نظر را با بهائی قابل قبول تامين می كنند .با وجود اين ، الياف كربن مقاومت به ضربه و چقرمگی كمتری نسبت به الياف شيشه و آراميد دارند . در حالی كه اين الياف ، خودشان در برابر خوردگی مقاوم هستند ، خوردگی الكترو شيميائی فلزات را گسترش می دهند . در مورد كامپوزيت های با كارآئی بالا، بايد واقع بين بود . بها، فاكتوری مهم در گزينش نوع الياف است . روش هائی برای كاهش هزينه الياف ، بدون تغيير كامل نوع الياف انتخابی وجود دارد . براي مثال ، الياف كربن معمولی از نوع فضائی آن (برای كاربردهای هوا فضائی) بسيار ارزان تر است . يكی از الياف معمولی كم بها ، الياف با بافت درشت با تعداد بيشينه ی ۳۲۰,۰۰۰ تار است . اين الياف به خاطر ساخت سريع آنها ، به گونه ی قابل توجهی ارزان تر هستند . هم چنين قطر تارهای درون الياف نيز می تواند تاثير مهمی بر بهای آن داشته باشد . بيشتر تارهای كربنی حاصل از PAN ، قطری در حدود ۷ ميكرون دارند ، اما الياف با قطر كمتر ( برای مثال 5 ميكرون) كارآئی بهتری دارند . ولی معمولاً گران تر و شكننده تر هستند و بنابراين استفاده از آنها مشكل تر است . جنبه های اقتصادی نيز روی بهای الياف كربن و ديگر الياف تاثير مهمی دارد . چنانچه حجم توليد افزايش يابد ، بها كاهش خواهد يافت و چنانچه ، الياف كربن در كاربردهای معمول بيشتر به كار رود ، انتظار می رود قيمت ها كاهش يابند .با معرفی الياف آراميد در دهه ی ۷۰ ميلادی توجه بازار به الياف كربنی كاهش پيدا كرد . با وجود اين در اوائل دهه ی ۸۰ ميلادی ، توليد كنندگان الياف كربنی توليد الياف با استحكام و سفتی بالا و مقاوم در برابر ضربه را ـ تقريباً با همان بهای پيشين ـ آغاز كردند . بدين ترتيب حتی سهم بيشتری از بازار را به خود اختصاص دادند . با طراحی مناسب ، كامپوزيت هاي الياف كربنی می توانند ده برابر مستحكم تر و پنج برابر سفت تر از فولاد با دست كم یک پنجم وزن فولاد باشند . هيچ نوع الياف ديگری نمی تواند سفتی كربن را به همراه استحكام زياد و با بهای معقول تامين كند .
كاربردهای الياف كربن عبارتند از :
لوازم ورزشی (كفش های دو ميدانی ، راكت تنيس و غيره ) ، اندام مصنوعی ، بدنه هواپيما ، سازه های ماهواره ای ، تجهيزات حفاری در دريا ، بدنه موتور موشك ، درهای شاتل فضائی و غيره . كامپوزيت های الياف كربنی در بيشتر هواپيماهای نظامی و هواپيماهای نوين يافت می شوند . هم چنين به كارگيری اين كامپوزيت ها در كاربردهای زيربنائی هم چون تقويت سازه ای يا بازسازی در برابر زلزله مرسوم است . بهای نوع معمول اليـاف كربن حدود ۱۴ دلار بر كيلوگرم است . حال آنكه بهای ارزان ترين نوع فضائی آن حدود ۴۴ دلار بر كيلوگرم است .

با وجود اين ، الياف كربن ويژه كه بهائی بالاتر از ۲۰۰۰ دلار بر كيلوگرم دارند ، نيز موجود هستند و گاهی مصرف می شوند

منبع:مجله ی دانشجویی پلیمر

منبع: http://www.www.www.iran-eng.ir/showthread.php/20699
 
آخرین ویرایش:

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
سوال: آیا الیافی هست که در مقابل آتش مقاوم باشه؟

جواب:

1- الیاف شیشه با دمای ذوب 1350 درجه
2- الیاف سرامیک مانند آلومینا با دمای ذوب 2045 درجه یا مانند کربید سیلیکن تا 1200 درجه هم مقاوم هستش
3- الیاف کربن تا 600 درجه مقاومه
4- الیاف کولار
5- الیاف طبیعی آزبست ( پنبه نسوز )

یک کتابی هست به اسم Handbook OF Technical Textiles که در مورد الیاف صنعتی بحث کرده
توش میتونی یه چیزایی پیدا کنی
اگه رفرنس فارسی میخوای کتاب الیاف بشر ساخت یا کتاب علوم و تکنولوژی الیاف هم بد نیست

به نقل از:
http://www.www.www.iran-eng.ir/showthread.php/117078
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
در آمدي بر روش توليد كامپوزيتهاي كربن- كربن با استفاده از قير
خلاصه مقاله:
مواد كربني شامل گرافيت و كامپيوزيتهاي كربن كربن در چند دهه اخير كاربردهاي بسيار مهم و متعددي يافته اند كه مي توان به مواردي نظير هواپيماهاي نظامي فضـاپيماهاي مـا فـوق صـوت، ديرگـدازها، مـواد بيولوژيكي، المانهاي كوره، پره توربينهاي گازي، ترمزهاي پيشرفته مورد استفاده در هواپيماها و ماشينهاي مسابقه و قطارهاي سري ع السير، نازل راكتها و موشكها، لبه حمله بـال ودماغـه شـاتلهاي فضـايي و ... اشـاره كرد . بطور كلي در مواردي كه به استحكام ويژه ( نسبت استحكام به وزن ) بالا و مقاومت به سـايش ناشـي از جريان شديدي گازهاي خورنده و بسيار گرم و عدم امكان استفاده از سيستمهاي خنك كننده نياز باشد اين مواد نامزد بسيار خوبي مي باشند .
موادكربني و يا كامپوزيت هاي كربن ـ كربن شامل دو جزء الياف كربن و يا گرافيت و ماتريس كربني مي باشد . الياف كربن و يا گرافيت از ساختاري به شدت آرايش يافته برخوردار مي باشند كه در اشكال يك بعدي، دو بعدي و سه بعدي بافته شده و نقش جزء تقويت كننده را در كامپوزيت ايفا مي كند نمونه پيش بافته طي مرحله آغشته سازي درتماس با انواع خاصي از رزينها اشباع شده و درون كوره قرار مي گيرند . پيروليز نمونه با يك برنامه دمايي معين و تحت شرايط اتمسفري مشخص موجب مي شود تاتمامي عناصر به جز كربن از نمونه خارج شده و كربن باقيمانده به تدريج ساختاري گرافيتي بيابد . در اين مقاله سعي خواهدشد تا آشنايي اجمالي با فرايند توليد با استفاده از قير كه اقتصادي ترين روش توليد آنها مي باشد حاصل شود


كلمات كليدي: كامپوزيت، كربن-كربن، قير، كربني شدن، گرافيتي شدن

منبع:
http://www.civilica.com/Paper-CIMS09-CIMS09_128.html
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
الیاف کربن و آلوتروپ:

بعضی از عنصرها در طبیعت هستند که به صورت های مختلف در طبیعت پیدا می شن. مثلاً فسفر (که به صورت های سفید، قرمز، سیاه) و یا گوگرد (ارترومبیک، منو کلینیک و آمورف) و همینطور کربن (الماس، گرافیت و آمورف). به هر کدوم از این حالت های عنصر ها اصطلاحاً آلوتروپ گفته میشه. برای تبدیل یک عنصر از یک آلوتروپ به آلوتروپ دیگه نیاز به اعمال حرارت و فشار هست. یک نمودارهایی هست که مشخص میکنه برای تبدیل آلوتروپ ها به یکدیگه چه مقدار فشار و دما نیاز هست. می تونید این نمودا ها رو توی کتاب های شیمی معدنی پیدا کنید. البته الیاف کربن آلوتروپ کربن نیست، بلکه فرمی از ساختار منظم اتم های کربن در کنار همدیگه هست. در لینکی که دادم نحوه تولید الیاف کربن داده شده.

در مورد نانوتیوب ها اطلاعی ندارم ولی می تونم ID دوستم رو بهتون بدم اگه سوالی دارین ازشون بپرسین. ایشون در حال تحصیل دکترای نانو تکنولوژی در نروژ هستند و در زمینه نانو خیلی کارشون درسته. ID ایشون اینه: mahdi.darab@yahoo.com

سوال:
1- الماس مصنوعی چطوری درست میشه؟
2- الیاف کربنی که برای بدنه هواپیما می سازن ، چطوری ساخته میشه؟
3- کربن رو چطوری تغییر حالت می دن(مثلا اگه بخوام الیاف کربنی بسازم)؟
4- چرا با ایجاد جرقه تو یه گاز مثل هیدروژن نانو لوله کربنی ساخته میشه(چه فرایندی رخ میده)؟
5- اگه فرآیند تولید نانو لوله رو توی آب انجام بدیم چی میشه؟

منبع:
http://www.www.www.iran-eng.ir/converse.php?u=176321&u2=118017
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
لوله های کامپوزیتی

مواد اولیه : الیاف ، رزین ها ، و دیگر پرکننده ها

لوله های FRP با استفاده از تقویت کننده های الیاف شیشه ، رزین های گرما سخت ، مواد linerviel و انواع دیگر افزودنی ها ساخته می شوند . الیاف تقویت کننده معمولا ً از جنس الیاف شیشه E است . مشخصات اسمی الیاف شیشه E عبارتند از سفتی کششی در حدود 72400 مگا پاسکال ، استحکام کششی در حدود 3450 تا 3800 مگا پاسکال و درصد افزایش طول در حدود 4 تا 5 درصد . انواع دیگری از الیاف در این رده عمومی وجود دارند که نیازهای گوناگون مقاومت به خوردگی را برطرف می کنند اما الیاف شیشه E تا حدودی تمام بازار را تحت سلطه خود درآورده است . الیاف تقویت کننده دیگری برای کاربردهای ویژه و شرایط خورنده منحصربه فرد وجود دارد مانند FCR ، C ، AR و جز آن . الیاف تقویت کننده بسته به فرآیند ساخت لوله و تحمل بار مورد نیاز ، تغییر می کنند . الیاف تک جهته تابیده شده ، الیاف کوتاه ، تقویت کننده های رشته ای ، نمد ، الیاف بافته شده و انواع دیگر الیاف درساخت لوله های FRP کاربرد گسترده ای دارند .

درصد وزنی الیاف به طراحی محصول نهایی وابسته خواهد بود . جهت الیاف ، شیوه چیدمان لایه ها روی هم و تعداد لایه های تقویت کننده ، ویژگی های مکانیکی ، سفتی و استحکام واقعی لوله را تعیین می کند . رزین مورد استفاده در ساخت لولۀ FRP ویژگی های خاص خود را دارد . درحالی که ویژگی های استحکام و سفتی رزین چندین بار کم تر از الیاف است ، رزین نقش اساسی را ایفا می کند . رزین های گرما سخت گروه عمده ای هستند که در ساخت لوله FRP به کار می روند . رزین به عنوان چسب عمل کرده و الیاف را در ساختار لایه ای محصول پخت شده به هم متصل می کند . رزین در برابر خوردگی ناشی از عبور گازها و سیالات از درون لوله مقاومت می کند . مشخصات فیزیکی و شیمیایی رزین ، مقاومت حرارتی که به شکل یک مشخصه که دمای انتقال شیشه ای ، Tg ، نامیده می شود و ویژگی های روش ساخت نقشی کلیدی در طراحی لوله ایفا می کنند . درحالی که رزین های پلی استر ، وینیل استر و اپوکسی قصد تسلط بر بازار لوله های FRP را دارند ، رزین های دیگری نیز وجود دارند که مقاومت به خوردگی منحصر به فردی ایجاد می کنند . پلی استرها اغلب برای تولید لوله هایی با قطر زیاد استفاده می شوند . وینیل استرها مقاومت به خوردگی بیشتری معمولا ً در برابر مایعات خورنده قوی مانند اسیدها و سفیدکننده ها دارند . رزین اپوکسی معمولا ً برای لوله هایی با قطر کم تراز 750 میلی متر و فشارهایی در حدود 8/20 مگا پاسکال تا 6/34 مگا پاسکال استفاده می شوند .
طراحی و تولید لوله های FRP اغلب به اجزای افزودنی نیز نیاز دارد . بیشترین افزودنی ها به شکل دهی رزین های گرما سخت کمک می کنند و همچنین ممکن است برای تکمیل واکنش های شیمیایی و پخت چند لایی مورد نیاز باشند . کاتالیزورها و سخت کننده ها در این دسته قرار می گیرند . پرکننده ها ممکن است به علت مسایل اقتصادی و یا افزایش کارایی استفاده شوند . بعضی از لوله ها به ویژه لوله های گرانشی به شدت به سفتی خمشی بالایی نیاز دارند . در مورد لوله های زیر خاک ، سفتی خمشی با عامل EI اندازه گیری می شود که حاصل ضرب سفتی چندلایی کامپوزیتی E و ممان اینرسی سطح مقطع لوله I است . سفتی چندلایی E را می توان با تغییر جهت الیاف و افزایش حجم الیاف و موارد دیگر افزایش داد . از آنجایی که ممان اینرسی I با توان سوم ضخامت دیوار نسبت دارد ؛ هرگونه کوششی برای افزایش ضخامت دیواره ، ممان اینرسی را به طور چشمگیری افزایش می دهد . در نتیجه بعضی از لوله های گرانشی با افزودن شن در مرحله تولید ساخته می شوند . افزایش شن مایۀ افزایش ضخامت دیواره و در نتیجه افزایش ممان اینرسی و افزایش عامل EI می شود . این کار افزایش سفتی با استفاده از ماده نسبتا ً ارزان مانند شن نامیده می شود . بنابراین شن می تواند یک افزودنی مهم در ساخت لولۀ FRP باشد .
چندین روش برجسته در صنعت
لوله های FRP به دو روش اصلی ساخته می شوند : ریخته گری گریز از مرکز و پیچش الیاف . با این وجود روش های بسیار متغیر و بهبود یافته ای در این سالها ایجاد شده است . در روش ریخته گری گریز از مرکز ، الیاف درون یک لولۀ فولادی قالب قرار داده می شوند . مواد تقویت کننده خشک هستند و در این مرحله به رزین آغشته نمی شوند . لایه چینی ویژه مواد در لوله فولادی به وسیله مهندس طراح و با توجه به کارآیی نهایی مورد نیاز ، مشخص می شود . هنگامی که الیاف در سر جای خود قرار گرفتند ، لوله فولادی با سرعت بالایی آغاز به چرخیدن می کند . رزین مایع در مرکز لوله پاشیده می شود و با توجه به نیروی گریز از مرکز ، تقویت کننده خشک را آغشته می کند . پوسته کامپوزیتی در حال چرخش با استفاده از گرما به لوله ای با سطح داخلی و خارجی صاف تبدیل می شود . سطح داخلی ، اغلب یک سطح هموار و غنی از رزین است .
روش شرح داده شده ، روش ریخته گری گریز از مرکز معمولی و متداول است . الیاف بافته شده ، پارچه و نمدهای سوزنی از مواد ساختاری این روش هستند . درصد وزنی الیاف دراین روش ساخت ، معمولا ً بین 20 تا 35 درصد است . می توان با استفاده از بافت های متراکم تر با افزایش سرعت چرخش برای دست یابی به فشردگی بیشتر به درصد وزنی الیاف بالاتری دست یافت .

برای ساخت لوله های گرانشی با قطرهای زیاد که سفتی لوله یک عامل بحرانی است و به سختی حاصل می شود ، اغلب اوقات از روش بهینه شده ای به نام ریخته گری گریز از مرکز Hobas استفاده می شود . روش Hobas شبیه به ریخته گری گریز از مرکز معمولی است ، افزون براین که برای افزایش عامل EI ، شن نیز به مواد اولیه افزوده می شود . این روش اغلب در قطرهای بزرگ تر از 500 میلی متر استفاده می شود و شن بخش عمده ای از سازه خواهد شد . درصد وزنی الیاف حدود 20 درصد است . درصد وزنی رزین 35 درصد و مقدار شن 45 درصد وزنی است . بنابراین درصد بالای شن باعث افزایش سفتی مقطع I می شود ولی سفتی الاستیک E را افزایش نمی دهد . به خاطر اینکه شن یک ماده ساختاری نیست ، از لولۀ Hobas به عنوان لوله گرانشی استفاده می شود نه لوله فشاری . در فرآیند پیچش الیاف ، پوسته ای پیرامون یک سنبه چرخان با قطری برابر با قطر داخلی لوله به طور پیوسته پیچیده می شود و به طور کلی در این روش ، تغییراتی ایجاد شده است . در فرآیند پیچش الیاف دو جهته یا مارپیچی ، الیاف تحت زاویه و به صورت مارپیچی روی سنبه پیچیده می شود ، تا هنگامی که تمام سطح پر شود و تعداد لایه های درست روی هم چیده شود . زاویه پیچش معمولا ً در محدوه زاویه بهینه تئوری و بین 55 تا 75 درجه است . طراحی ، زاویه پیچش مناسب را مشخص می کند . این روش بیشترین سفتی E و استحکام را ایجاد می کند ؛ چون الیاف پیوسته هستند نه بریده شده و می توان به درصد وزنی الیاف 60 تا 80 درصد رسید .

یک نسخه بهینه شده این روش ، روش پیچش الیاف پیوسته Drostholm است که برای ساخت لوله های پیوسته نوآوری شده است . در این روش یک سنبه انعطاف پذیر به کار می رود که پس از پخت لوله و حرکت لوله به جلو به جای اول خود برمی گردد . به خاطر اینکه در این روش لایه چینی به صورت کاملا ً مارپیچی امکان ندارد ، پیچش الیاف به صورت حلقه ای 90 درجه انجام می شود و بین لایه های محیطی الیاف کوتاه پاشیده می شود ، ممکن است پرکننده های شنی و الیاف نمدی نیز به کار روند . درهر حال الیاف محیطی بریده شده ساختار اولیه هستند . درصد وزنی الیاف در این روش بین 45 تا 70 درصد است . در حالت ثابت بودن طول لوله که از پیچش الیاف به صورت محیطی به همراه الیاف کوتاه استفاده می شود ، این فرآیند پیچش حلقوی کوتاه Chop-Hoop Winding نامیده می شود . ممکن است از شن نیز در این روش استفاده شود . با این کار درصد وزنی الیاف نیز به 45 تا 65 درصد کاهش می یابد .

ممکن است بر سر این که کدام یک از این روش ها بهینه است ، بحث باشد . با این وجود بحث های فنی کلیدی معمولا ً پیرامون اثر افزایش شن بر روی ویژگی های مکانیکی چند لایی کامپوزیت FRP است . اثرات دراز مدت تحمل بار و رفتار خزشی در حضور پرکننده شنی در سالهای اخیر مورد توجه بوده است .

ملاحظات طراحی و محیطی
طراحی لوله های FRP با توجه به موضوعات هیدرولیکی و شارجریان انجام می شود ؛ چون این مسایل از ملاحظات اساسی در طراحی مؤثر جریان گاز و سیال در سیستم های لوله کشی هستند . لوله های FRP برتری های قابل توجهی نسبت به مواد مرسوم مانند لوله های فلزی و بتنی دارند . به عنوان مثال ، هموار بودن سطح داخلی لوله FRP باعث کاهش مقاومت سیال و انرژی لازم برای جریان یافتن سیال در داخل لوله می شود . به دلیل مقاومت لوله FRP در برابر خوردگی ، با گذشت زمان و استفاده از لوله ، سطح داخلی هموار باقی مانده و مقاومت در برابر خوردگی نیز نقش اساسی در لوله های FRP بازی می کند .

گستره دمایی در طراحی لوله های FRP به نوع کاربرد و نوع ماده ای که در درون لوله جریان خواهد داشت بستگی دارد . لوله های زیرزمینی برای دمای ثابتی که میانگین دمای محیط پیرامون آن ها با توجه به شرایط محلی است ، طراحی می شوند . لوله های سطح زمین چون تحت شرایط باد ، باران ، برف و پرتوهای فرابنفش قرار می گیرند گستره دمایی وسیع تری دارند . در هر دو حالت گستره دمایی براساس آب و هوا و شرایط منطقه ای که لوله در آن نصب می شود تثبیت می شود . این شرایط معمولا ً از محدوده 20 تا 65 درجه سانتی گراد خارج نمی شود . در حقیقت به جز در موارد اندک ، محدوده دمای کاری معمولا ً بین 20 تا 55 درجه سانتی گراد قرار دارد .
با این وجود توجه به دمای سطح داخلی لوله مهم است چون معمولا ً سیال یا گاز در دماهای بالایی بین 52 تا 150 درجه سانتی گراد در داخل لوله جریان می یابد . رزین و لایه آستر درونی اغلب اوقات بر اساس نوع ماده خورنده عبوری از درون لوله و دمای فرآوری آن برگزیده می شود . لوله های FRP را می توان برای بسیاری از کاربردها ساخت .
طراحی لوله FRP هم چنین به شدت ، تحت تأثیر محدوده فشار کاری است ؛ در حالی که بیشتر لوله ها طی عمر کاری خود در معرض فشار داخلی مثبت قرار دارند . بار خلأ نیز می تواند به عنوان یکی از فاکتورهای طراحی لوله ، به ویژه در مورد لوله های زیرزمینی مورد توجه قرار بگیرد . در مورد لوله های گرانشی زیرزمینی ، لوله های FRP اساسا ً بر مبنای سفتی مورد نیاز و با توجه به شرایط خاک ، عمق دفن و فشار خارجی طراحی می شوند .


با این وجود ، اگرچه لوله های گرانشی در رده های متفاوت سفتی طراحی می شوند ولی این طراحی به گونه ای است که لوله بتواند در محدوده فشار روزانه که به وسیله کاربر نهایی مشخص می شود ، به طور موفقیت آمیزی کار کند . دور از انتظار نیست که حتی یک لوله گرانشی FRP هنگام کار تحت فشارهای حدود 8 مگا پاسکال قرار بگیرد . در حقیقت لوله های گرانشی نیز برای تحمل خوب بارهای طولانی مدت طراحی می شوند . لوله های فشاری درواقع بنابر شرایط تحمل بارهای فشاری بلند مدت برای کار پیوسته در خط طراحی می شوند . در نتیجه ، لوله های فشاری FRP اساسا ً برای تأمین استحکام طراحی می شوند تا سفتی ؛ چون در شرایط بارگذاری کوتاه مدت و بلند مدت بارهای فشاری ، بسیار مورد توجه هستند .

بارهای خارجی می توانند به صورت بارهای ناشی از دفن لوله لوله های زیرزمینی ، بارهای خمشی و یا تماسی ، لوله های سطح زمین و یا بارهای حاصل از ترافیک لوله های زیرزمینی باشند . بسیاری از این بارها ممکن است در کارآیی بلند مدت لوله FRP بحرانی باشند و محاسبه جابه جایی ها و تنش های چندلایی تحت بار برای تضمین یک پارچگی سازه در طول عمر مفید مورد انتظار مهم است . بسیاری از راهنماهای طراحی و استانداردها ، طراحی لوله های FRP را از طریق این گونه محاسبات و تأییدیه ها کنترل می کنند .
در برخی از کاربردها که قابلیت اشتعال ، دود ، مقاومت در برابر آتش و سمی بودن مهم هستند ، مقاومت در برابر شعله می تواند از اصول طراحی باشد . از جاهایی که این مسایل مورد توجه هستند ، سکوهای نفتی دور از ساحل است . تولید کننده ها می توانند از رزین های گوناگون مقاوم در برابر شعله و یا لایه های خارجی مقاوم ، برای این منظور استفاده کنند .

منبع:
منبع: فصلنامه كامپوزیت
به نقل از:
http://www.polymerscience.mihanblog.com/post/506
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
كاربرد كامپوزیت ها در صنعت خودرو سازی
كاربرد كامپوزیت ها در صنعت خودرو سازی
صنعت كامپوزیت یكی از صنایع رو به رشد در عرصه مواد مهندسی است. امروزه به خاطر مزایایی كه كامپوزیت ­ها نسبت به فلزات دارند ، توسعه زیادی پیدا كرده­اند. از جمله می­توان به كاربرد قطعات كامپوزیتی در صنعت خودرو اشاره كرد.
اكثر قطعاتی كه در خودرو كاربرد دارند فلزی هستند ، اما فلزات محدودیت ­هایی دارند كه راه را برای استفاده از قطعات كامپوزیت در صنعت خودرو باز كرده است. كامپوزیت­های مورد استفاده در صنعت خودرو بیشتر از نوع كامپوزیت ­های زمینه پلیمری هستند. این كامپوزیت ‌ها از مواد ترمو­ست (گرما­سخت) و ترمو پلاستیک (گرمانرم) تشكیل شده­ اند كه توسط الیاف شیشه تقویت می ­شوند.
* مزایا و صرفه ­جویی ­ها
به علت مزایایی كه قطعات كامپوزیتی نسبت به قطعات فلزی دارند و صرفه ­جویی ­هایی كه در اثر استفاده از آن ها ایجاد می­ شود ، هر روز قطعات بیشتری از خودرو به قطعات كامپوزیتی تبدیل می­شود. در فلزات امكان ریخته­ گری با ضخامتهای كم وجو ندارد. اگر با ورق نیز به شكل ­دهی قطعه پرداخته شود ، دور­ ریز زیاد دارد و ضایعات را زیاد می كند. در صورتی كه برای كامپوزیت ­ها این محدودیت وجود ندارد و به خاطر قدرت سیلان بالا می­ توانند تمام قالب را پر كرده و شكل قطعه مورد نظر را كامل كنند.
در زیر به بعضی از مزایا و صرفه ­جویی ­های ناشی از استفاده از مواد كامپوزیت در صنعت خودرو ، اشاره شده است:
1- سبکی:
این قطعات به خاطر وزن مخصوص كم دارای وزن كمتری نسبت به قطعات فلزی هستند. وزن تا حدود نصف و حتی بیشتر كاهش پیدا می­كند. طبیعتاً این كاهش وزن در كاهش مقدار سوخت و استفاده از موتورهایی با قدرت كمتر و كوچک تر موثر خواهد بود. این مساله باعث صرفه ­جویی در مصرف سوخت و در نتیجه كاهش آلودگی می­گردد.
۲- خواص مكانیكی بالا:
به همان نسبت كه وزن قطعات كم می شود ، مقاومت مكانیكی آنها در ابعاد مختلف افزایش می یابد و به­ طور متوسط در تمام خواص مكانیكی خواص بهتری نسبت به فلزات از خود نشان می­ دهند. این مسئله باعث افزایش عمر قطعات خواهد شد.
3- مقاومت در برابر خوردگی:
بر خلاف فلزات تاثیر مواد نمكی و شیمیایی و اكسید شدن در قطعات كامپوزیتی كم است یا اصلاً وجود ندارد كه باعث صرفه ­جویی در هزینه­ های نگهداری و افزایش عمر قطعات می ­شود و استفاده از قطعات در محیط­ های مرطوب را برای مدت طولانی فراهم می ­نماید.
4- سرمایه­ گذاری كم:
بر خلاف قطعات فلزی برای تولید قطعات با استفاده از كامپوزیت­ها سرمایه­­­گذاری كمتری لازم است. به­طور مثال اگر برای تولید یک قطعه از فلز چند قالب لازم باشد ، برای تولید همان قطعه با كامپوزیت ، از یک یا دو قالب بیشتر استفاده نمی ­شود.
5- سهولت تولید:
این قطعات را می ­توان با ماشین آلات كمتر و با سهولت بیشتری نسبت به فلزات و با تعداد بیشتری تولید كرد.
* روشهای تولید
با توجه به­ نوع قطعه و خواص مورد نظر ، در قطعات كامپوزیتی با زمینه پلیمر ، روش ­های مختلفی برای تولید وجود دارد. در زیر به شرح بعضی از آن­ ها پرداخته­ شده است:
1) روش های دستی (Hand Lay-up): كه روش پیچیده ­ای نیست و تیراژ پایین دارد. این روش برای قطعات ساده كه انتظار بالایی از نظر خواص مكانیكی از آن ها نداریم استفاده می­ شود ، مانند شناورها ، قایق ها، گلدانها و اتاقكها.
2) روش (RTM (Resin Transfer Molding: در این روش یک قالب رزینی وجود دارد كه پارچه­ ای از فایبرگلاس در آن قرار می ­گیرد و سپس رزین تزریق می گردد. این روش از دقت و صافی سطح بیشتری نسبت به روش دستی برخوردار است. ولی چون فشار بالا نیست به هم پیوستگی كمتری نسبت به روش SMC دارد. RTM نسبت به روش دستی به سرمایه­گذاری بیشتری نیاز دارد.
3) روش: (SMC (Sheet Molding compound: در این روش ابتدا مواد ترموست (گرماسخت) با الیاف شیشه تقویت شده و سپس بصورت ورق در می آید و سپس تحت گرما و فشار در قالب پرس شده و شكل می گیرد.
4) روش (GMT (Glass Matt reinforced Thermoplastic: در این روش مواد ترمو پلاستیک (گرمانرم) با پارچه ­ای از فایبر گلاس مسلح شده و تحت فشار شكل می ­گیرند.
5) روش (FW (Filament Winding: این روش عمدتاً برای تولید قطعات مدور استفاده می شود كه به صورت پیوسته تولید می ­شوند ، مثلاٌ برای تولید لوله ­ها، به دور هسته­ ای استوانه­ ای ، فایبر گلاس آغشته به رزین پیچیده می ­شود و بعد مواد تحت گرما حالت نهایی به خود می گیرند.
6) روش (BMC (Bulk Molding Compound: توده ­ای از خمیر كه شامل مواد پلیمری و فایبرگلاس می­باشد ، تحت فشار به قالب تزریق می شود.
7) روش (LFT (Long Fiber Thermoplastic: در این روش مواد ترمو پلاستیک با الیاف شیشه در داخل اكسترودر مخلوط می ­شوند و پس از خروج از اكسترودر تحت فشار ، قطعه شكل نهایی را به خود می­گیرد.
روش­ های SMC و GMT بیشتر در ساخت قطعات در صنعت خودرو كاربرد دارند. امروزه تمام بدنه خودرو از روش SMC تولید می ­شود. به ­طور مثال می ­توان به خودرو رنو مدل spas اشاره كرد كه تمام بدنه آن كامپوزیتی است. سپرها ، سینی زیر موتور ، قطعات زیر خودرو (Under body cover) ، سقف خودور ، قاب چراغ­ ها ، سینی جا چراغی ، جای فن و غیره از جمله قطعاتی هستند كه معمولاٌ از كامپوزیت ­ها ساخته می ­شوند.

منبع: شبکه تحلیلگران تکنولوژی ایران
به نقل از:
http://www.polymerscience.mihanblog.com/post/449
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
کاربرد کامپوزیت در صنعت برق و الکترونیک

حدود 20 سال است که کامپوزیتهای پلیمری تقویت شده با الیاف FRP در کاربردهای الکتریکی مصرف می شوند . این مواد در ساخت قطعات گوناگون صنعت برق به کار می روند ؛ از جمله لوله های عبور کابل ، سیستم های حمل کابل در تونل ها و پل ها ، تیرهای انتقال برق ، بازوهای عرضی ( کراس آرم ها ) ، مقره ها ، برج های ارتباطی و جز آن .

لوله کامپوزیتی عبور کابل

یکی از موارد کاربرد کامپوزیت در صنعت برق ، ساخت لوله های عبور کابل است . لوله های پلیمری تقویت شده با الیاف شیشه GRP را می توان در ترکیب با اتصالات و متعلقات ویژه ای به کاربرد و آن ها را به شکل یک سیستم عبور کابل چندلایه و چند ردیفی شکل داد . این لوله ها برای کابل های شبکه برق شهری و کابل های مخابراتی زیرزمینی مورد استفاده قرار می گیرند . علاوه بر این در موارد زیر نیز کاربرد دارند :
1) برای کابل هایی که از زیر ریل جرثقیل های سقفی و یا راه های اصلی شهری عبور می کنند .
2) برای کابل هایی که از روی پل ها و رودخانه ها عبور می کنند . به ویژه برای کابلهایی که از روی پل عبور می کنند ، به کارگیری لوله های GRP ، بار وارده بر پل را کاهش داده و ساخت و ساز پل را تسهیل خواهد کرد .

سیستم حمل کابل کامپوزیتی

سیستم های حمل کابل کامپوزیتی ، یک محصول سازه ای برای حل بسیاری از مشکلات مهندسی و طراحی در شبکه های برق رسانی و مخابراتی هستند که برای نگهداری کابل های گرانبها و اغلب حساس و استراتژیک در دراز مدت قابل اعتمادند . این سیستم ها ویژگی های منحصربه فردی دارند که آن ها را قادر به تحمل بسیاری از محیط های خورنده می کند ؛ به ویژه شرایطی که مواد سنتی در آن ها عمر کاری مفید و اقتصادی ندارند . این محصولات از رزین های گرما سخت تقویت شده با شیشه و به نحوی طراحی و ساخته می شوند که یکپارچگی سازه ای آنها با انواع فولادی و آلومینیمی رقابت می کند ؛ با این تفاوت که مشکلات خوردگی ، سنگینی وزن و هدایت الکتریکی آنها را ندارند .
این محصولات در برابر اسیدها ، نمک ها ، قلیاها و محدوده وسیعی از محیط ها و مواد شیمیایی خورنده که بر آلومینیم و فولاد گالوانیزه اثرات شدیدی دارند ، مقاومند . حتی محصولات آلومینیمی یا فولادی پوشش داده شده نیز ممکن است به علت خراش های کوچک ایجاد شده حین نصب یا پس از آن ، در معرض آسیب باشند .
این محصولات در مقایسه با فولاد یا آلومینیم ، دارای نسبت استحکام به وزن بسیار بالایی هستند درحالی که یکپارچگی سازه ای مشابهی با آنها دارند .
پروفیل های کامپوزیتی پالترود شده که در این سیستم ها به کارگرفته می شوند دارای وزن مخصوصی حدود یک چهارم فولاد و یک سوم آلومینیم هستند که این امر حمل و نقل و برپا کردن آن ها را تسهیل می کند . برخلاف فولاد زنگ نزن این قطعات را می توان در محل و با وسایل دستی برید و سوراخ کرد . از آنجاییکه سینی و نردبان های این سیستم نارسانا هستند ، از بابت انتقال برق به سیستم حمل کابل از کابل های آسیب دیده هیچ نگرانی وجود ندارد . علاوه بر آن احتیاجی به جلوگیری از خوردگی الکترولیتی در شرایط ویژه نیست . ویژگی های نارسانایی و مغناطیسی نبودن به معنی سیستم حمل کابل ایمن ترند .
در بزرگترین پروژه مهندسی انجام شده با سرمایه خصوصی – تونلی که بریتانیا را به اروپا متصل می کند – بیش از 63/3 هزارتن FRP پالترود شده ، 1260کیلومتر کابل الکتریکی و فیبر نوری را بر روی خود نگه داشته اند . این کابل ها ، روشنایی ، تهویه و ارتباطات درون تونل را کنترل می کنند . کابل های 25 کیلو ولتی تأمین کننده انرژی قطارها نیز با این کامپوزیت های پالترود شده حمل می شوند . این محصولات با شرایط زیر سازگارند :

· محدوده دمایی 5 تا 40 درجه سانتی گراد
· رطوبت 100 درجه
· سرعت باد km/h 359
· پاشش مداوم آب نمک و حتی غوطه وری در آن
· نصب آسان
· حداقل تعمیرات
· هزینه کلی کمینه
· مقاومت در برابر بارگذاری استاتیک کابل ها

بازوهای عرضی کامپوزیتی

هر تیر انتقال برق فشار متوسط ( 20 و 33 کیلوولت ) از سه قسمت اصلی یعنی تیر ، بازوهای عرضی و مقره ها تشکیل شده است . بازو های عرضی معمولا ً از جنس فولاد ساخته می شوند . با این وجود در بعضی از کشورها نظیر آمریکا ، استرالیا ، کانادا و بخشهایی از اروپا این محصولات از مواد کامپوزیتی ساخته می شوند . به کارگیری بازوهای عرضی کامپوزیتی به جای نمونه فلزی دارای برتری هایی است ؛ از جمله :
· کاهش وزن : سنگینی وزن بازوهای عرضی فلزی ( حدود 20 کیلوگرم ) یکی از مشکلات شرکتهای انتقال و توزیع برق است . در مناطقی که به دلایل گوناگون از جمله ناهمواری سطح زمین ، امکان استفاده از ماشین های بالابر در آن ها وجود ندارد ، حمل بازوهای عرضی فلزی تا بالای تیر بسیار سخت و خطرناک است ؛ درصورتی که کامپوزیت ها وزن نسبتا ً کمی دارند و حمل آنها آسان است .
· مقاومت در برابر خوردگی : بازوهای عرضی فلزی در آب و هوای مرطوب و خورنده ، عمر نسبتا ً کمی دارند . یکی از برتری های مواد کامپوزیت ، مقاومت بسیار مناسب آنها در برابر خوردگی است که این مواد را برای این مناطق مطلوب می سازد .
· نارسانایی الکتریکی : کامپوزیت ها را می توان به صورت موادی عایق طراحی کرده و ساخت . این ویژگی خطر برق گرفتگی و اتصال کوتاه را کاهش می دهد . شاید بتوان با به کارگیری بازوهای عرضی کامپوزیتی از کاربرد مقره های حامل کابل – که در واقع نقش عایق را بین کابل و پروفیل بازی می کنند – جلوگیری کرد .
· زیبایی : در ساخت بازوهای عرضی فلزی همیشه محدودیت هایی وجود دارد که طراح را مجبور به استفاده از قطعات استاندارد نبشی می کند . با به کارگیری کامپوزیت ها می توان به سراغ طرح هایی رفت که علاوه بر بهینه بودن ، زیبا نیز باشند .
· عمر بیشتر : عمر بازو های عرضی کامپوزیتی حدود سه برابر طول عمر نمونه فلزی است . به دلیل عمر بیشتر و عدم نیاز به تعویض و تعمیر در کامپوزیت ها ، هزینه های تعویض و نگهداری حذف خواهند شد .
· کاهش تداخلات امواج رادیویی : امواج رادیویی بدون هرگونه انحراف و شکست از کامپوزیت ها عبور می کنند .
· کاهش افت توان خط : به کارگیری بازوهای عرضی کامپوزیتی از نشت جریان الکتریکی از خط به سمت پایه ها تا حدودی جلوگیری می کند و به این ترتیب میزان افت توان خط کاهش خواهد یافت .
علاوه بر موارد فوق با به کارگیری بازوهای عرضی کامپوزیتی می توان از طرح هایی استفاده کرد که یکپارچه بوده و نیازی به سوار کردن قطعات برروی هم نباشد .

تیرهای کامپوزیتی

به کارگیری تیرهای کامپوزیت FRP ، موضوع جدیدی در خدمات برق رسانی نیست ، با این وجود تیرهای انتقال برق FRP پالترود شده 21 تا 24 متری داستان دیگری است . تیرهای FRP با یک سوم وزن تیرهای چوبی ، نضف وزن تیرهای فولادی و تنها یک دهم وزن تیرهای بتنی ، انتخاب بسیار جذابی برای اغلب شرکتهای خدماتی برق رسانی هستند .
شرکت آمریکایی بریستول تنسی الکتریک سیستم BTES به تازگی 144 تیر FRP را در دو خط انتقال نصب کرده است . شرکت استرانگ ول Strongwell Corp واقع در ایالت ویرجینیا این تیرهای FRP پالترود شده SE 28 را با بیشترین ظرفیت ممان اینرسی در مقطع پایینی طراحی و برای جایگزینی تیرهای چوبی ، فولادی و بتنی در خطوط انتقال برق تولید کرده است . شرکت های خدمات برق رسانی در حال کشف برتری های تیرهای SE 28 ، نسبت به تیرهای ساخته شده از مواد سنتی هستند . تیرهای SE 28 شرکت استرانگ ول ، سبک ، محکم و دارای ویژگی های هدایتی خیلی کمی هستند . این تیرها همچنین در برابر خوردگی ، پوسیدگی ، پرتوهای فرابنفش ، نفوذ آب ، حشرات و دارکوب ها مقاومت بسیار بالایی دارند .
به عقیده دکتر مایکل برودر ، مدیر عامل شرکت BTES ، تیرهای کامپوزیتی SE 28 ، در مقایسه با تیرهای چوبی ، با گذشت زمان استحکامشان را از دست نمی دهند و تقریبا ً به هیچ گونه ترمیم و تعمیری احتیاج ندارند . او هم چنین به ویژگی های الکتریکی تیرهای FRP و تحمل ضربه و بار ناشی از بادهای شدید توسط آن ها اشاره می کند .

منبع: فصلنامه كامپوزیت ( شماره 12 )
به نقل از:
http://www.polymerscience.mihanblog.com/post/434
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
الیاف کربن تکنولوژی جدید کامپوزیت ها . . .

الیاف کربن تکنولوژی جدید کامپوزیت ها . . .

الیاف کربن نسل جدیدی از الیاف پر استحکام است . این مواد از پرولیز کنترل شده گونه هایی از الیاف مناسب تهیه می شود ؛ به صورتی که بعد از پرولیز حداقل 90 درصد کربن باقی بماند . الیاف کربن نخستین بار درسال 1879 میلادی زمانی که توماس ادیسون از این ماده به عنوان رشته پرمقاومت در ایجاد روشنایی الکتریکی استفاده کرد ، پای به عرصه علم و فن آوری گذاشت . با این حال درآغاز دهه 1960 بود که تولید موفق تجاری الیاف کربن ، با اهداف نظامی و به ویژه برای کابرد در هواپیمای جنگی ، آغاز شد . دردهه های اخیر ، الیاف کربن در موارد غیر نظامی بسیاری ، همچون هواپیماهای مسافربری و باربری ، خودروسازی ، ساخت قطعات صنعتی ، صنایع پزشکی ، صنایع تفریحی – ورزشی و بسیاری موارد دیگر کاربردهای روزافزونی یافته است . الیاف کربن در کامپوزیت های با زمینه سبک مانند انواع رزین ها به کار می رود . کامپوزیت های الیاف کربن در مواردی که استحکام و سختی بالا به همراه وزن کم و ویژگی های استثنایی مقاومت به خوردگی مدنظر باشند ، یگانه گزینه پیش روست . همچنین هنگامی که مقاومت مکانیکی در دمای بالا ، خنثی بودن از لحاظ شیمیایی و ویژگی ضربه پذیری بالا نیز انتظار برود ، بازهم کامپوزیت های کربنی بهترین گزینه هستند . با توجه به این ویژگی ها ، پهنۀ گسترده موارد کاربرد این ماده در گستره های گوناگون فن آوری به سادگی قابل تصور است .
میزان تولید الیاف کربن از 1992 تا 1997 رشد 200 درصدی در این فاصله 6 ساله داشته که خود نشانگر اهمیت تکنولوژی این ماده است .
هم اکنون ، ایالات متحده آمریکا نزدیک به 60 درصد تولید جهانی الیاف کربن را به مصرف می رساند و این در حالی است که ژاپن تلاش می کند به میزان مصرفی برابر با 50 درصد تولیدات جهانی این محصول دست یابد . ژاپن به واسطه شرکت صنعتی توری ، خود بزرگترین تولید کننده الیاف کربن درجهان است . هم چنین عمده ترین تولید کننده الیاف کربن با استفاده از پیش زمینه قیر ، ژاپن است .

پیشگویی برای سال 2013 میلادی ...
سال 2013 است . خودرویی جدید به نام "BLACKBEAUTY " 100 MPG بدلیل این که ضمن دارا بودن بالاترین کارایی ، به میزان 100 درصد نیز دوستدار محیط زیست شناخته شده ، طرفداران بسیار زیادی دارد . این خودرو پس از انقراض نسل خودروهای فولادی با سازه ای تمام کامپوزیت برپایه کربن متولد شده است . با استفاده از مواد کربنی در ساخت بدنه و سازه های اصلی این خودرو مانند شاسی ، موتور و سیستم های انتقال نیرو ، کاهش وزن به دست آمده موجب مصرف اندک سوخت شده است . این مواد پیشرفته به همراه اندکی فلزات سبک که عمدتا ً در اتصالات به کار می روند ، اقتصاد خودرو را از لحاظ میزان مصرف سالیانه سوخت با انقلابی عظیم مواجه کرده است . این مواد سبک در فریم شاسی ، موتور کاتالیتیک با بازده بالا ، در باتری های لیتیمی و موتورهای الکتریکی ، پانل های بدنه ، مخزن سوخت و مواد پیشرفته نگه دارنده متان که سوخت اصلی خودروست و خلاصه در تمام المان های اصلی که چنین وسیله نقلیه کم مصرف با توانایی های بسیار بالا را می سازد ، به کار رفته است . پانل های بدنه از کامپوزیت های کربنی به روش SMC با سطوح بسیار صاف و آماده رنگ کاری ساخته شده است . فیبریل های کربنی در اندازه های زیر میکرون با ویژگی هدایت الکتریکی ، سطح قطعات پانل های بدنه را به سادگی دارای ویژگی الکترو استاتیک می کنند . از سوی دیگر چون کامپوزیت پلیمری تقویت شده با الیاف کربن از نظر شیمیایی خنثی است به تخریب در برابر پرتو فرا بنفش حساس نیست ، در نتیجه پانل های بدنه به هیچ نوع عملیات پایانی نیاز ندارند . بخش های دیگری که زیاد به آن ها توجه نمی شود ، مانند درموتور ، هوزینگ ها و گیربکس ها تماما ً از کامپوزیت کربنی به روش قالب گیری تزریقی ساخته شده و جایگزین قطعات سنگین ریخته شده فلزی شده اند . مخزن سوخت ، کامپوزیت کربنی ساخته شده به روش پیچش الیاف است که مملو از کربن فعال و فیبریل های کربنی است که موجب افزایش قابلیت نگهداری گاز مایع در فشارهای پایین می شود . موتور کاتالیتیک از کاتالیست های پوشش داده شده برروی کره ها و لوله های ریز شیاردار کربنی که به کربن توخالی معروف هستند و در واقع نوعی از الیاف کربن سوراخ شده هستند ، استفاده می کند . این واحد مرکزی تولید توان الکتریکی که درواقع قلب سیستم به حساب می آید ، به دلیل استفاده زیاد از فرآورده های الیاف کربن ، قادر است کارایی خود را در دماهای بسیار بالایی که الزاما ً در اثر کارکرد موتور پدید می آید ، به خوبی حفظ کند . این دلیل اصلی بالا بودن غیرمعمول بازده چنین خودرویی است . از سوی دیگر مشکلات مربوط به آن دسته از شکست های قطعات که ناشی از اختلاف در ضرایب انبساط حرارتی درنسل خودروهای فلزی بود ، به واسطه استفاده از قطعات کامپوزیتی کربنی ، به طور کامل از بین رفته است . مهندسین مواد ، با دست کاری در میزان جهت یافتگی الیاف کربن ، نوع جدیدی از الیاف را ساخته اند که به طور استثنایی دارای هدایت حرارتی یک بعدی بسیار زیادی بوده و بدین وسیله توانسته اند دستگاههای سرمازا را با بازده بسیار بالا در موتور این خودرو به کار برند .
در سیستم باتری یونی لیتیم / لیتیم از آندهای کربنی و کاتدهای کامپوزیت کربنی استفاده شده است . سیستم جدید تهویه هوا با استفاده از رادیاتورهای پلاستیکی تقویت شده با الیاف کربن ، محفظه های کربنی و فوم های کربنی عایق ، بیشترین شرایط رفاه و آسایش سرنشین را به همراه حذف کامل گازهای ضد ازن ، فراهم آورده است . سیستم GPS تعبیه شده برای ارتباطات ماهواره ای ، تلفن همراه ، دستگاه دورنگار و رایانه های on-board همگی ضمن رعایت طراحی ارگونومیک از قاب های کامپوزیت کربنی که هدایت الکتریکی مناسبی دارند ، بهره می برند .
قرار دادن المان های جهت دار کامپوزیتی بر پایه کربن در جهت اعمال لنگر ، سیستم تعلیق کربنی را در این خودرو به گونه ای ساخته که موجب حذف بسیاری از قطعات سنگین فلزی شده و همین موضوع خود موجب عملکرد بهتر سیستم تعلیق شده است . روتورهای کربنی ترمز و لنت ترمزهای گرافیتی ، وزن مجموعه سیستم ترمز را در راستای عملکرد بهتر ترمز کاهش داده است . رینگ های تقویت شده با الیاف کربن ضمن کاهش وزن موجب سرد کار کردن مجموعه ترمز و درنتیجه بالاتر رفتن ضریب امنیت ترمز می شود . تایرهای با فرمولاسیون پیشرفته شامل فیبریل های کربن و بلوک های کربنی جهت دار به همراه الیاف کربن بافته شده به صورت شعاعی ، ضمن سبکی موجب حذف مقاومت غلطشی تایر و سرد ماندن آنها در طول حرکت می شود . المان های تعلیق ، رینگ ها و تایرهای ساخته شده از الیاف کربن باعث برقراری مطمئن اتصال با زمین و در نتیجه کمینه شدن احتمال آتش سوزی دراثر بارهای الکترواستاتیک و افزایش امنیت و راحتی سرنشین در هنگام سوار و پیاده شدن از خودرو می شود .
با استفاده روز افزون از الیاف کربن در ساخت خودروهای پیشرفته ، مصرف سالیانه بنزین به سرعت رو به کاهش گذاشته و نیاز به واردات سوخت های فسیلی را که باعث عدم تعادل تجاری می شود به حداقل می رساند . درعوض به منظور گسترش واحدهای تولید مواد کربنی جدید با کاربردهای روبه رشد در ساخت خودروهای کربنی ، میلیون ها فرصت شغلی در کشور پدیدار می شود .

الیاف کربن را می توان براساس مدول الاستیک ، استحکام و دمای نهایی عملیات حرارتی به گروههای زیر دسته بندی کرد :

دسته بندی براساس ویژگی ها :

§ الیاف کربن با ضریب کشسانی بسیار بالا ؛ بیشتر از 450 گیگا پاسکال
§ الیاف کربن با ضریب کشسانی بالا؛ بین 350 تا 450 گیگا پاسکال
§ الیاف کربن با ضریب کشسانی متوسط ؛ بین 200 تا 350 گیگا پاسکال
§ الیاف کربن با استحکام کششی بالا و ضریب کشسانی پایین ؛ استحکام کششی بیش از 3 گیگا پاسکال و ضریب کشسانی کم تر از 100
§ الیاف کربن با استحکام کششی بسیار بالا ؛ بالاتر از 5/4 گیگا پاسکال
دسته بندی براساس نوع پیش زمینه :
§ الیاف کربن با پیش زمینه الیاف پلی اکریلونیتریل
§ الیاف کربن با پیش زمینه قیر صنعتی
§ الیاف کربن با پیش زمینه قیر مزوفاز
§ الیاف کربن با پیش زمینه قیر ایزوتروپیک
§ الیاف کربن با پیش زمینه الیاف ریون ( ابریشم مصنوعی )
§ الیاف کربن با پیش زمینه فاز گازی و
دسته بندی براساس دمای نهایی عملیات حرارتی :
§ الیاف نوع 1 ، دمای عملیات حرارتی بالاتر از 2000 درجه سانتی گراد ؛ تولید کننده الیاف HM
§ الیاف نوع 2 ، دمای عملیات حرارتی حدود 1500 درجه سانتیگراد ؛ تولید کننده الیاف HS
§ الیاف نوع 3 ، دمای عملیات حرارتی کم تر یا حدود 1000 درجه سانتی گراد ؛ تولید کننده الیاف با ضریب استحکام پایین

ساخت الیاف کربن :
درفرهنگ واژگان نساجی آمده است : الیاف کربن به الیافی گفته می شود که دست کم دارای 90 درصد کربن هستند و از پیرولیز کنترل شده الیافی ویژه به دست می آیند . اصطلاح الیاف گرافیتی درمورد الیافی به کار می رود که کربن آنها بیش از 99 درصد باشد . انواع گوناگونی از الیاف به عنوان پیش زمینه تولید الیاف کربن وجود دارد که دارای ویژگی های انحصاری و مورفولوژی ویژه هستند . پرمصرف ترین الیاف پیش زمینه عبارتند از : الیاف پلی اکریلونیتریل ( PAN ) ، الیاف سلولزی ( مانند ریون ویسکوز و پنبه ) ، قیر حاصل از قطران ذغال سنگ ( Coal tar pitch ) و نوع ویژه ای از الیاف فنلیک .
الیاف کربن از طریق پیرولیز پیش زمینه های آلی که به شکل الیاف هستند ، ساخته می شود . در واقع انجام عملیات حرارتی موجب حذف عناصری مانند اکسیژن ، نیتروژن و هیدروژن و باقی ماندن کربن به شکل الیاف می شود . در پژوهش هایی که برروی الیاف کربن انجام شده ، مشخص گردیده که ویژگی های مکانیکی الیاف کربن با افزایش درجه تبلور و میزان جهت گیری الیاف پیش زمینه و کاهش نواقص موجود در آنها ، بهبود می یابد . بهترین راه برای دست یابی به الیاف کربن با ویژگی های مناسب ، استفاده از الیاف پیش زمینه با بیشترین مقدار جهت گیری و حفظ آن در طی فرآیندهای پایدار سازی و کربنیزاسیون از طریق اعمال کشش در طول فرآیند است .

تولید الیاف کربن از پیش زمینه پلی اکریلونیتریل
برای تولید الیاف کربن با کیفیت بالا از پیش زمینه PAN و سه مرحله اساسی وجود دارد :
1- مرحله پایدار سازی اکسیدی : در این مرحله الیاف PAN هم زمان با اعمال کشش مورد عملیات حرارتی اکسیدی در محدوده دمایی 200 تا 300 درجه سانتی گراد قرار می گیرد . این عملیات ، PAN گرما نرم را به ترکیبی با ساختار نردبانی یا حلقه ای تبدیل می کند .
2- مرحله کربنیزاسیون : بعد از اکسیداسیون ، الیاف بدون اعمال کشش در پیرامون دمای 1000 درجه سانتی گراد در محیط خنثی ( معمولا ً نیتروژن ) برای مدت چند ساعت ، مورد عملیات حرارتی کربنیزاسیون قرار می گیرند . درطی این فرآیند ، عناصر غیرکربنی آزاد می شود و الیاف کربن با بالانس جرمی 50 درصد به نسبت الیاف PAN نخستین ، به دست می آید .
3- مرحله گرافیتاسیون : بسته به نوع الیاف کربن مورد نظر ، از لحاظ ضریب کشسانی ، و اعمال این مرحله در محدوده دمایی مابین 1500 تا 3000 درجه سانتیگراد ، موجب بهبود درجه جهت گیری کریستالیت های کربنی درجهت محور الیاف و بنابراین مایه ی بهبود ویژگی ها می شود .
تولید الیاف کربن از دیگر پیش زمینه ها نیز کمابیش دارای مراحل اصلی است که در مورد تولید از پیش زمینه PAN آورده شد .

ساختار الیاف کربن :

مشخصه های ساختاری الیاف کربن بیشتر با دستگاههای میکروسکپ الکترونی و پراش پرتوی ایکس قابل بررسی است . برخلاف گرافیت ، ساختار کربن بدون هرگونه نظم سه بعدی است . در الیاف کربن برپایه PAN ، ساختار الیاف در طی عملیات پایدار سازی اکسیدی و متعاقب آن کربنیزاسیون ، از ساختار زنجیره ای خطی به ساختار صفحه ای تغییر می کند . به این ترتیب صفحات اصلی در پایان مرحله کربنیزاسیون در جهت محور طولی الیاف قرار می گیرند . بررسی های اشعه X با زاویه تفرق باز ( Wide angle X-ray ) نشان می دهد که با افزایش دمای عملیات کربنیزاسیون ، ارتفاع انباشتگی و مقدار جهت گیری صفحات اصلی ، افزایش می یابد . قطر منوفیلامنت های PAN تأثیرعمده ای بر نفوذ عملیات کربنیزاسیون در الیاف کربن تولیدی دارد ، به همین دلیل تغییر در ساختار کریستالوگرافی پوسته و هسته هر منوفیلامنت در الیافی که کاملا ً پایدار شده اند ، به وضوح قابل مشاهده است . پوسته از جهت گیری مرجح طولی بالا به همراه انباشتگی زیاد کریستالیت ها برخوردار است درحالی که هسته ، جهت گیری کم تر صفحات اصلی و حجم کم تر کریستالیت ها را نشان می دهد .
عموما ً دیده شده که هرچه استحکام کششی الیاف پیش زمینه بیشتر باشد ، ویژگی های کششی الیاف کربن به دست آمده نیز بیشتر می شود . چنان چه مرحله پایدار سازی به صورتی مناسب انجام گیرد ، در آن صورت استحکام کششی و ضریب کشسانی با کربنیزاسیون تحت کشش ، به مقدار بسیار زیادی در محصول کربنی نهایی بالا می رود . بررسی های انجام شده با دستگاههای پراش پرتوی ایکس و پراش الکترونی نشان داده است که در الیاف کربن با ضریب کشسانی بالا ، کریستالیت ها پیرامون محور طولی الیاف قرار گرفته اند . این درحالی است که صفحات لایه ای با بیشترین جهت یافتگی به موازات محور الیاف استقرار یافته اند . به طور کلی استحکام الیاف کربن به نوع پیش زمینه ، شرایط فرآیند ، دمای عملیات حرارتی و وجود نواقص ساختاری در الیاف ، ارتباط دارد . در الیاف کربن با پیش زمینه PAN و افزایش دما تا 1300 درجه سانتی گراد مایه ی افزایش استحکام می شود ولی پس از 1300 درجه ، استحکام به آرامی کم می شود . این موضوع در مورد ضریب کشسانی نیز صادق است .
الیاف کربن بسیار ترد هستند . لایه ها در الیاف با اتصالات ضعیف و اندروالسی به هم دیگر متصل شده اند . تجمع فلس مانند لایه ها موجب می شود تا رشد ترک در جهت عمود برمحور الیاف به آسانی صورت بگیرد . در خمش ، الیاف در کرنش های بسیار پایین می شکنند . با تمام این معایب ، الیاف کربن از نقطه نظر مجموع ویژگی های شیمیایی ، فیزیکی و مکانیکی منحصر به فردی که دارد ، در بسیاری از عرصه های مهندسی و علوم در دو دهه اخیر تقریبا ً بدون رقیب مانده است .

کاربردهای الیاف کربن :
الیاف کربن در موارد صنعتی گوناگونی به کارمی رود که در این جا نمونه هایی از آن ارایه شده است :
صنعت حمل و نقل
کاربردهای صنعت حمل و نقل بدین گونه اند : مخازن گاز مایع خودروها ، قطعات موتور ، کمک فنر ، شفت های انتقال نیرو ، ملحقات چرخ و جعبه فرمان ، لنت های ترمز ، بدنه ماشین های مسابقه ، بدنه کشتی ها و فنرهای لول .
صنایع ساختمانی و معماری
مواد ساختاری پل ها ، ساز و کار پل های جمع شونده ، تقویت کننده بتن های پرمقاومت ، سازه های باربر ، دیوارهای جداکننده ، سازه های پیش تنیده برای کمک به سازه های بتنی حمل بار ، استفاده در تعمیر ساختمانهای در حال تخریب ، استفاده در جداره داخلی تونل ها برای جلوگیری از ریزش تونل و استفاده در رمپ ها برای جلوگیری از ریزش خاک را می توان از کاربردهای ساختمانی این الیاف دانست .
صنایع هواپیما سازی و هوافضا
سازه های داخلی کابین مسافرین اعم از پانل های جداره صندلی ها و میزها ، پوشش ها ، اجزای سازه ای ماهواره ها ، لبه بال هواپیماهای جنگنده ، نوک هواپیماهای مافوق صوت ، نازل موشک های دوربرد و قطعات حساس موتور هواپیماها نیز می توانند دارای الیاف کربن باشند .
صنایع پزشکی
الیاف کربن در ساخت استخوان مصنوعی ، اجزای تجهیزات پرتوی ایکس ، صندلی های چرخدار ، انواع اجزای مصنوعی بدن برای معلولین و دریچه قلب به کار می روند .
بخش انرژی
از جمله کاربردهای الیاف کربن در بخش انرژی ، می توان بدین موارد اشاره کرد : باتریهای سوختی ، پره های توربین و پره های آسیاب های بادی برای تولید برق از انرژی باد .

صنایع الکترونیک ، تجهیزات الکتریکی و ماشین سازی
این کاربردها عبارتند از : قاب رایانه های همراه ، اجزای رایانه ها ، بازوی ربات های صنعتی ، چرخ دنده ها ، غلتک ها ، چرخدنده های پرسرعت ، قطعات خود روغنکاری شونده ، آنتن ها ، مواد عایق الکتریکی ، مخازن تحت فشار ، غلتک چاپ گرها و قاب تلفن های همراه .

منبع : فصلنامه كامپوزیت
به نقل از:
http://www.polymerscience.mihanblog.com/post/405
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
کامپوزیت

کامپوزیت
کامپوزیتها عبارتند از ترکیبی از الیاف تقویت کننده ویک ماتریس پلیمری که می توان تصور کرد ماتریس پلیمری)مواد زمینه مانند چسبی است که تقویت کننده ها را به یکدیگر چسبانده و آنها را از آثار محیطی حفظ می کند بنابراین مواد کامپوزیتی را در دو دسته مواد زمینه و تقویت کننده ها بررسی می کنیم:
مواد زمینه کامپوزیت ها:دو وظیفه اساسی مواد زمینه انتقال بارها به تقویت کننده و حفظ تقویت کننده از آثار محیطی ناسازگار است مواد زمینه را می توان تقریبا در سه دسته پلیمرها، سرامیکها وفلزات طبقه بندی کرد
الف)پلیمرها:
موسوم به رزین متداول ترین مواد زمینه هستند و معمولا به دو گروه کلی ترموست و ترموپلاستیک تقسیم می شوند. در گذشته ترموستها مواد اصلی زمینه کامپزیت ها بودند اگرچه امروزه کاربرد ترموپلاستیک ها رو به افزایش است ولی ترموست ها صلبیت خوبی دارند و در دماهای بالاتر کارآیی بهتری دارند از طرفی ذوب مجدد ترموست ها به دلیل شبکه ای شدن امکان پذیر نیست در حالی که ترموپلاستیک ها شبکه ای نمی شوند و جامداتی هستند که ذوب ،شکل دهی وسپس سرد می شوند.
رزین پلی استر: یکی از معروف ترین و ارزان ترین رزین هاست به طوری که گاهی واژه فایبرگلاس به کامپوزیت ساخته شده از رزین پلی استر با تقویت کننده شیشه به کار می رود.
کاربرد اصلی این رزین ها در بدنه کشتیها، کانالها، لوله ها، پانل سقف، واگنهای راه آهن و …. است.
از جمله معایب این رزین ها کارآیی کم در دمای بالا و مقاومت کم در برابر هوازدگی است.
رزین اپوکسی: متداول ترین زمینه برای چندسازه های پیشرفته است، چسبندگی عالی و محافظت در برابر خوردگی از ویژگیهای این رزین است بالاترین دمای کاربرد آن 350 تا400 درجه فارنهایت است از این رزین برای تولید لوله ها سیلندرها، مخازن و ظروف تحت فشار استفاده می شود.
رزین فنولی و کربنی: رزینهای ترموست فنولی کاربرد محدود ولی مهمی دارند به طوری که سالهاست در مصارفی نظیر کلیدهای برقی، جعبه تقسیم ها، قطعات قالب گیری شده خودرو، دستگیره و توپ بیلیارد استفاده می شود برخی دیگر از کاربردهای این رزین تقویت شده با الیاف بلند در دماغه راکت و درزگیری اگزوز و در بعضی پره ها و باله های راکتها است.
قیمت نازل های زمینه کربنی پنج برابر قیمت نازل های فنولی است و هم اکنون برای استفاده در جداره خارجی فضا پیما ها مورد توجه است این مواد دارای پایداری گرمایی در دمای بالا همچنین مقاومت در برابر شوک های گرمایی هستند.
زمینه های ترموپلاستیک: انتخاب آنها براساس قیمت، مقاومت در برابر عوامل محیطی، مقاومت در برابر خزش و …. تعیین می شود برخی از پلاستیکهای رایج تقویت شده عبارتند از: نایلون، پلی تترافلوئور واتیلن (PTFE) ،پلی وینیل کلرید (PVC) ،پلی استیرن و ....
که به علت کارآیی در دمای بالا به عنوان ترموپلاستیک های مهندسی نامیده می شوند.
تقویت کننده های کامپوزیت ها: تقویت کننده ها را تقریبا می توان به سه دسته الیاف، ذرات و ویسکرها تقسیم کرده که هر یک کاربرد منحصر به فرد دارند.
الف) الیاف: موادی هستند که در مقایسه با سایر مواد یک محور بسیار بلند دارند و استحکام آنها در جهت طول نسبت به سایر جهات به مراتب بیشتر است.
الیاف شیشه: از قرنها پیش مورد استفاده قرار می گرفته اند در دوره رنسانس برای استحکام به اجسام ظریف و نازک رشته های شیشه ای به شکل متقاطع یا بافته متصل می شد.
شیشه یک ماده بی شکل است که استخوان بندی آن سیلیس و ترکیبات و خواص ویژه آن ناشی از وجود اجزای اکسیدیمختلف است چهار نوع شیشه که بیشتر در کامپوزیت ها مورد استفاده قرار می گیرند عبارتند از: شیشه E شیشه S شیشه C و کوارتز .
الیاف کربن _ گرافیت: تقاضا برای الیاف تقویت کننده با استحکام و مدول بالا منجربه توسعه الیاف کربن یا گرافیت شده است.
الیاف گرافیت الیافی کربنی هستند که تحت عملیات حرارتی بالاتر از 1650 درجه فارنهایت قرار گرفته اند. رسانایی نسبتا خوب الکتریسیته، سبکی، استحکام، مقاومت در برابر خزش و میرایی عالی از جمله مزایا آن است. ازجمله معایب آن نیز ترد بودن، مقاومت ضربه ای کم و گران بودن است. آلات موسیقی، صنایع هسته ای و بلندگو دست وپای مصنوعی از جمله کار برد های این تقویت کننده هاست
الیاف آلی: متداول ترین آنها آرامیدها هستند و کولار یکی از متداول ترین آرامیدها است. شکنندگی آنها کمتر از شیشه یا کربن است نسوزند و در برابر اغلب حلالها مقاومند به طوری که در متداولترین حلالها به جز اسیدها و بازهای خیلی قوی بیش از 90% استحکام کششی خود را حفظ می کنند.
از کاربردهای آنها در زره پوش تانکها و نفربرها، تقویت کننده تایرها، جلیقه ضد گلوله است
تقویت کننده های ذره ای: اغلب از ذرات برای کاهش قیمت رزین های تقویت شده ترموست یا ترموپلاستیک استفاده می شود مانند: تالک، کربنات، کلسیم، خاک اره و پنبه نسوز برخی از این مواد هستند
تقویت کننده های ویسکر: تک بلورهایی که نسبت معیین طول به عرض آنها بیش از یک است طول آنها معمولا mm2 تا mm50 است استحکام آنها بسیار زیاد است در کاربدهایی از رزین مورد استفاده قرار می گیرند که نمی توان از الیاف استفاده کرد
این مواد ظرفیت حرارتی زیادی دارند به همین علت در زمینه های فلزی و سرامیکی بیشتر مورد استفاده قرار می گیرند.قیمت بالا و لزوم جمع آوری مرتب کردن وتوزیع آنها به شکل مطلوب کاربرد آنها را محدود کرده است.
پوشش های نانوکامپوزیتی: یکی از نمونه های کاربرد عملی نانوتکنولوژی نشاندن لایه های نانوکامپوزیتی برروی مته های حفاری است. اخیرا شرکت ابزار سازی وگا نوع جدیدی از پوشش نانوکامپوزیتی موسوم به پوشش TH ارائه کرده است که استفاده از آن در ابزارهای حفاری موجب افزایش طول عمر وهمچنین بهبود کیفیت کار این ادوات می شود.
راندمان ابزارهای حفاری با استفاده از این ابزارها دو برابر مته های معمولی است. تولید حرارت کمتر در هنگام استفاده از مته هایی که با پوشش جدید بهبود یافته اند موجب می شود که بتوان از این مته ها در سوراخکاری خشک استفاده نمود.

منبع:
http://www.polymerscience.mihanblog.com/post/2
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
رقابت نانوکامپوزیت­های خاک­رس / پلیمر با کامپوزیتهای الیافی

رقابت نانوکامپوزیت­های خاک­رس / پلیمر با کامپوزیتهای الیافی

با پیدا شدن سروکله تکنولوژی نانوکامپوزیت، جهشی در زمینه تقویت پلیمرها بوجود آمده، و معقول به نظر می‌رسد که فکر کنیم نانوکامپوزیت­های خاک­رس / پلیمر، بتوانند جای کامپوزیتهای تقویت شده با الیاف مرسوم را بگیرند.

از نظر تئوری، تقویت پلیمرها در مقیاس نانویی، امتیازات برتری نسبت به کامپوزیتهای تقویت­شده با الیاف دارند. ضعف کامپوزیت­های تقویت شده با الیاف، در واقع یک شکست در راه استفاده مفید از خواص ذاتی و طبیعی مواد است. مثلاً سعی می‌کنیم که با بکارگیری پیوندهای قوی کووالانسی و استفاده از صفحه‌های آروماتیک ساختار گرافیتی، مواد کربنی را مستحکم‌تر کنیم. در حالیکه الیاف کربنی که امروزه استفاده می‌شود، تنها 3 تا 4 درصد استحکام نظری صفحات آروماتیک را به دست می‌دهند. عدم اتصال داخلی بین صفحات آروماتیک در ساختار الیاف کربنی، مانع دستیابی به استحکام مطلوب مواد می‌شود، در حالیکه این مشکل در مورد نانوکامپوزیتهای تقویت­شده با پرکننده‌های لایه‌ای وجود ندارد. هنگامیکه از پرکننده‌های لایه‌ای و ورقه‌ای در زمینه پلیمری استفاده می‌شود، اتصالات و پیوندهای داخلی بوجود آید و بنابراین حداکثر استفاده از خواص ذاتی و طبیعی لایه‌های منفرد می‌شود.

در حقیقت خواص مکانیکی بدست آمده، در بهترین نانوکامپوزیت‌های خاک­رس / پلیمر بسیار کمتر از کامپوزیتهایی است که از درصد بالایی الیاف، برای تقویت استفاده می‌کنند. در حال حاضر بیشترین پیشرفتها و بهبودها در خواص مکانیکی نانوکامپوزیتهای خاک­رس / نایلون6 بدست آمده که در آنها 4 درصد وزنی از خاک­رس بارگذاری شده است. شکل 2 ضریب و قدرت کشسانی این نانوکامپوزیت را با نایلون 60 و نایلون 60 تقویت شده با 48 درصد وزنی، الیاف خرده شیشه‌ای نشان می‌دهد. مشاهده می‌شود که بهترین نانوکامپوزیت خاک­رس / پلیمری، هنگامیکه حجم بالایی از جز را تقویت‌کننده الیافی مطرح باشد، نمی‌تواند با کامپوزیتهای الیافی همسانی و رقابت کند. به منظور دستیابی به خواص مکانیکی بهتر عناصر تقویت‌کننده بیشتری در نانوکامپوزیتهای خاک­رس / پلیمر مورد نیاز است، در حالیکه چنین کاری غیرممکن است. زیرا هنگامیکه عمل لایه لایه شدن اتفاق می‌افتد، سطح تماس لایه‌های رسی صدها و بلکه هزاران برابر می‌شود و این باعث می‌شود که مولکولهای پلیمر کانی، برای خیس کردن تمام سطح تقویت‌کننده‌های رسی نداشته باشیم.

در هر حال، هنگامیکه بحث استفاده از درصد پایین پرکننده مطرح باشد، در این حالت نانوکامپوزیت‌های خاک­رس / پلیمر را با کامپوزیتهای تقویت شده بوسیله الیاف، مقایسه کنیم، می‌بینیم که نانوکامپوزیتها تقویت بهتری را نسبت به کامپوزیتهای الیافی مرسوم، نشان می‌دهند. اطلاعات بدست آمده بوسیله تحقیقات Fornes و Panl در مورد ضریب یانگ نانوکامپوزیتهای خاک­رس / نایلون6 و کامپوزیت­های نایلون6 تقویت شده با الیاف شیشه‌ای در محدوده استفاده از 10 درصد وزنی پرکننده، در شکل 3 رسم شده است. می‌توان مشاهده نمود که نانوکامپوزیتها کارآیی بیشتری را در بهبود ضریب یانگ نسبت به کامپوزیتهای الیافی نشان می‌دهند.

از مقایسه بالا مشهود می‌گردد نانوکامپوزیتهای خاک­رس / پلیمر در محدوده بارگذاری درصد پایین از الیاف، امتیازاتی نسبت به کامپوزیتهای تقویت شده با الیاف دارند و مطمئناً بازار کامپوزیتهای الیافی مرسوم با حجم پایین از جزء الیافی، با پیشرفت نانوکامپوزیتهای خاک­رس / پلیمری تحت تاثیر قرار خواهد گرفت، ولی فعلاً تابحال، پیشرفت در نانوکامپوزیت­ها تاثیر کمی روی بازار کامپوزیتهای تقویت شده با الیاف گذاشته است.

مشکلات توسعه نانوکامپوزیت­های خاک­رس / پلیمر

علاوه بر پرکننده‌ها، عمده مشکلات پیش­روی پیشرفت نانوتکنولوژی خاک­رس / پلیمر عبارتنداز: عدم شناخت مکانیزمهای موثر در افزایش کارایی، به کاربردی پلیمرهای ترموستینگ و عدم پایداری ارگانوکلی‌ها در برابر حرارت.

اگرچه مدل‌سازی‌های زیادی در جهت پیشبرد درک از مکانیزم افزایش کارایی عمده خواص فیزیکی و مهندسی در استفاده از نانوکامپوزیت‌های خاک­رس / پلیمر انجام شده، ولی هنوز مسافت زیادی را پیش­رو داریم. به­عنوان مثال، هنوز خواص فیزیکی مهندسی لایه‌های منفرد سیلیکات، دقیقا شناخته نشده‌اند. از این رو مشکل است که یک مکانیزم تقویت‌کننده ایجاد کنیم، و از طرفی، ساختار ذغال باقیمانده ناشی از احتراق نانوکامپوزیت خاک­رس / پلیمر هنوز روشن نیست. بدون آن ممکن نیست مکانیزمی برای ایجاد مقاومت در برابر آتش، برای آن طراحی کنیم. مدل‌سازیها و تحقیقات تجربی اساسی، باید در جهتی هدایت شود که در آینده این موانع برطرف شوند.

به کاربردن پلیمرهای ترموستینگ، مشکل عمده دیگری در توسعه نانوکامپوزیتهای خاک­رس / پلیمر می‌باشد. ترکیب خاک­رس با یک پیش ماده پلیمر ترموستینگ می‌تواند عاملیت یک پلیمر را تغییر دهد. تغییر در عاملیت بر میزان اتصالات عرضی تاثیر می‌گذارد و بخوبی مشخص است که عمده خواص مهندسی پلیمر‌های ترموستینگ، تابعی از میزان تعداد اتصالات عرضی است. با این وجود گزارش‌هایی هم وجود داشته مبنی بر بهبود خواص مکانیکی سیستمهای پلیمری تروستینگی که میزان اتصالات عرضی آن پایین بوده است، از جمله اپوکسی رزین با T g پایین و پلی اوراتان‌ها.

آخرین مسئله مستقیماً بر می‌گردد به نگرانی در مورد تجاری‌سازی نانوتکنولوژی خاک­رس / پلیمر، کمبود ارگانوکلی‌های پایدار در برابر گرما و نیز از نظر تجاری در دسترس، از موانع ثبت شده در این مسیر هستند. بیشتر ارگانوکلی‌های در دسترس، از جایگزینی کاتیون فلزی درون ساختار رس، با نمکهای آمونیاک آلی تهیه می‌شوند. این نمکهای آمونیم در مقابل گرما ناپایدارند و حتی در دماهای کمتر از 170 درجه سانتیگراد از بین می‌روند. مسلماً چنین مواد فعال سطعی (سورفکتنت) برای بیشتر پلاستیکهای مهندسی هنگامیکه از تکنولوژی فرآیند ذوب شدن برای ساختن نانوکامپوزیت‌ها استفاده شود، صاحب نیستند و ساخت نانوکامپوزیتهایی که در آن از ارگانوکلی‌های اصلاح شده بوسیله نمکهای آمونیم بکار رفته، با استفاده از تکنیک‌های دیگر، به یک معضل تبدیل شده است. اگرچه تعداد زیادی سورفکتنت پایدار در برابر گرما، مثل فسفونیم شناخته شده‌اند، ولی این سورفکتنت‌ها برای کاربرد تجاری، مقرون به صرفه نیستند. نوآوری‌هایی در جهت اصلاح رس‌های آبدوست با استفاده از پلیمرها و الیکومرهای چند عاملی انجام شده تا ارگانوکلی‌های پایدار در برابر گرما برای تولید نانوکامپوزیتهای رس / پلیمر بسازند.

خلاصه و نتیجه‌گیری:

پیشرفت‌های عمده در توسعه نانوکامپوزیت­های خاک­رس / پلیمر به پانزده ساله اخیر بر می‌گردد و مزیتها و محدودیتهای این تکنولوژی روشن شده است. با این حال، تا شناخت مکانیزم‌های افزایش کارایی و بهبود خواص مهندسی آنها و اینکه بتوانیم ریزساختارهای آنها را سازماندهی و چینش کنیم تا به خواص مهندسی ویژه دست پیدای کنیم، راه طولانی در پیش رو داریم.
در مواقعی که از درصد پایین پرکننده استفاده شود، نانوکامپوزیتهای خاک­رس / پلیمر این پتانسیل را دارند تا جایگزین کامپوزیتهای مرسوم تقویت شده با الیاف شوند.

منبع:
http://www.polymerscience.mihanblog.com/post/9
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
آشنایی با كامپوزیت

آشنایی با كامپوزیت

در کاربردهای مهندسی، اغلب به تلفیق خواص مواد نیاز است. به عنوان مثال در صنایع هوافضا، کاربردهای زیر آبی، حمل و نقل و امثال آنها، امکان استفاده از یک نوع ماده که همه خواص مورد نظر را فراهم نماید، وجود ندارد. به عنوان مثال در صنایع هوافضا به موادی نیاز است که ضمن داشتن استحکام بالا، سبک باشند، مقاومت سایشی و UV خوبی داشته باشند و ....
از آنجا که نمی توان ماده‌ای یافت که همه خواص مورد نظر را دارا باشد، باید به دنبال چاره‌ای دیگر بود. کلید این مشکل، استفاده از کامپوزیتهاست.
کامپوزیتها موادی چند جزئی هستند که خواص آنها در مجموع از هرکدام از اجزاء بهتر است.ضمن آنکه اجزای مختلف، کارایی یکدیگر را بهبود می‌بخشند. اگرچه کامپوزیتهای طبیعی، فلزی و سرامیکی نیز در این بحث می‌گنجند، ولی در اینجا ما تنها به کامپوزیتهای پلیمری می‌پردازیم.
در کامپوزیتهای پلیمری حداقل دو جزء مشاهده می‌شود:

فاز تقویت کننده که درون ماتریس پخش شده است.

فاز ماتریس که فاز دیگر را در بر می‌گیرد و یک پلیمر گرماسخت یا گرمانرم می‌باشد که گاهی قبل از سخت شدن آنرا رزین می‌نامند.
تقسیم بندی‌های مختلفی در مورد کامپوزیتها انجام گرفته است که در اینجا یکی از آنها را آورده‌ایم:
خواص کامپوزیتها به عوامل مختلفی از قبیل نوع مواد تشکیل دهنده و ترکیب درصد آنها، شکل و آرایش تقویت کننده و اتصال دو جزء به یکدیگر بستگی دارد.
از نظر فنی، کامپوزیتهای لیفی، مهمترین نوع کامپوزیتها می باشند که خود به دو دستة الیاف کوتاه و بلند تقسیم می‌شوند. الیاف می‌بایست استحکام کششی بسیار بالایی داشته، خواص لیف آن (در قطر کم) از خواص توده ماده بالاتر باشد. در واقع قسمت اعظم نیرو توسط الیاف تحمل می‌شود و ماتریس پلیمری در واقع ضمن حفاظت الیاف از صدمات فیزیکی و شیمیایی، کار انتقال نیرو به الیاف را انجام می‌دهد. ضمناَ ماتریس الیاف را به مانند یک چسب کنار هم نگه می‌دارد و البته گسترش ترک را محدود می‌کند. مدول ماتریس پلیمری باید از الیاف پایینتر باشد و اتصال قوی بین الیاف و ماتریس بوجود بیاورد. خواص کامپوزیت بستگی زیادی به خواص الیاف و پلیمر و نیز جهت و طول الیاف و کیفیت اتصال رزین و الیاف دارد. اگر الیاف از یک حدی که طول بحرانی نامیده می‌شود، کوتاهتر باشند، نمی‌توانند حداکثر نقش تقویت کنندگی خود را ایفا نمایند.
الیافی که در صنعت کامپوزیت استفاده می‌شوند به دو دسته تقسیم می‌شوند:
الف)الیاف مصنوعی ب)الیاف طبیعی
کارایی کامپوزیتهای پلیمری مهندسی توسط خواص اجزاء آنها تعیین میشود. اغلب آنها دارای الیاف با مدول بالا هستند که در ماتریسهای پلیمری قرار داده شدهاند و فصل مشترک خوبی نیز بین این دو جزء وجود دارد.
ماتریس پلیمری دومین جزء عمده کامپوزیتهای پلیمری است. این بخش عملکردهای بسیار مهمی در کامپوزیت دارد. اول اینکه به عنوان یک بایندر یا چسب الیاف تقویت کننده را نگه میدارد. دوم، ماتریس تحت بار اعمالی تغییر شکل میدهد و تنش را به الیاف محکم و سفت منتقل میکند.
سوم، رفتار پلاستیک ماتریس پلیمری، انرژی را جذب کرده، موجب کاهش تمرکز تنش میشود که در نتیجه، رفتار چقرمگی در شکست را بهبود میبخشد.
تقویت کنندهها معمولا شکننده هستند و رفتار پلاستیک ماتریس میتواند موجب تغییر مسیر ترکهای موازی با الیاف شود و موجب جلوگیری از شکست الیاف واقع در یک صفحه شود.
بحث در مورد مصادیق ماتریسهای پلیمری مورد استفاده درکامپوزیتها به معنای بحث در مورد تمام پلاستیکهای تجاری موجود میباشد. در تئوری تمام گرماسختها و گرمانرمها میتوانند به عنوان ماتریس پلیمری استفاده شوند. در عمل، گروههای مشخصی از پلیمرها به لحاظ فنی و اقتصادی دارای اهمیت هستند.
در میان پلیمرهای گرماسخت پلیاستر غیر اشباع، وینیل استر، فنل فرمآلدهید(فنولیک) اپوکسی و رزینهای پلی ایمید بیشترین کاربرد را دارند. در مورد گرمانرمها، اگرچه گرمانرمهای متعددی استفاده میشوند، PEEK ، پلی پروپیلن و نایلون بیشترین زمینه و اهمیت را دارا هستند. همچنین به دلیل اهمیت زیست محیطی، دراین بخش به رزینهای دارای منشا طبیعی و تجدیدپذیر نیز، پرداخته شده است.
از الیاف متداول در کامپوزیتها می‌توان به شیشه، کربن و آرامید اشاره نمود. در میان رزینها نیز، پلی استر، وینیل استر، اپوکسی و فنولیک از اهمیت بیشتری برخوردار هستند.

منبع:
http://www.polymerscience.mihanblog.com/post/10
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
کامپوزیت

کامپوزیت
کامپوزیتها عبارتند از ترکیبی از الیاف تقویت کننده ویک ماتریس پلیمری که می توان تصور کرد ماتریس پلیمری)مواد زمینه مانند چسبی است که تقویت کننده ها را به یکدیگر چسبانده و آنها را از آثار محیطی حفظ می کند بنابراین مواد کامپوزیتی را در دو دسته مواد زمینه و تقویت کننده ها بررسی می کنیم:
مواد زمینه کامپوزیت ها:دو وظیفه اساسی مواد زمینه انتقال بارها به تقویت کننده و حفظ تقویت کننده از آثار محیطی ناسازگار است مواد زمینه را می توان تقریبا در سه دسته پلیمرها، سرامیکها وفلزات طبقه بندی کرد
الف)پلیمرها:
موسوم به رزین متداول ترین مواد زمینه هستند و معمولا به دو گروه کلی ترموست و ترموپلاستیک تقسیم می شوند. در گذشته ترموستها مواد اصلی زمینه کامپزیت ها بودند اگرچه امروزه کاربرد ترموپلاستیک ها رو به افزایش است ولی ترموست ها صلبیت خوبی دارند و در دماهای بالاتر کارآیی بهتری دارند از طرفی ذوب مجدد ترموست ها به دلیل شبکه ای شدن امکان پذیر نیست در حالی که ترموپلاستیک ها شبکه ای نمی شوند و جامداتی هستند که ذوب ،شکل دهی وسپس سرد می شوند.
رزین پلی استر: یکی از معروف ترین و ارزان ترین رزین هاست به طوری که گاهی واژه فایبرگلاس به کامپوزیت ساخته شده از رزین پلی استر با تقویت کننده شیشه به کار می رود.
کاربرد اصلی این رزین ها در بدنه کشتیها، کانالها، لوله ها، پانل سقف، واگنهای راه آهن و …. است.
از جمله معایب این رزین ها کارآیی کم در دمای بالا و مقاومت کم در برابر هوازدگی است.
رزین اپوکسی: متداول ترین زمینه برای چندسازه های پیشرفته است، چسبندگی عالی و محافظت در برابر خوردگی از ویژگیهای این رزین است بالاترین دمای کاربرد آن 350 تا400 درجه فارنهایت است از این رزین برای تولید لوله ها سیلندرها، مخازن و ظروف تحت فشار استفاده می شود.
رزین فنولی و کربنی: رزینهای ترموست فنولی کاربرد محدود ولی مهمی دارند به طوری که سالهاست در مصارفی نظیر کلیدهای برقی، جعبه تقسیم ها، قطعات قالب گیری شده خودرو، دستگیره و توپ بیلیارد استفاده می شود برخی دیگر از کاربردهای این رزین تقویت شده با الیاف بلند در دماغه راکت و درزگیری اگزوز و در بعضی پره ها و باله های راکتها است.
قیمت نازل های زمینه کربنی پنج برابر قیمت نازل های فنولی است و هم اکنون برای استفاده در جداره خارجی فضا پیما ها مورد توجه است این مواد دارای پایداری گرمایی در دمای بالا همچنین مقاومت در برابر شوک های گرمایی هستند.
زمینه های ترموپلاستیک: انتخاب آنها براساس قیمت، مقاومت در برابر عوامل محیطی، مقاومت در برابر خزش و …. تعیین می شود برخی از پلاستیکهای رایج تقویت شده عبارتند از: نایلون، پلی تترافلوئور واتیلن (PTFE) ،پلی وینیل کلرید (PVC) ،پلی استیرن و ....
که به علت کارآیی در دمای بالا به عنوان ترموپلاستیک های مهندسی نامیده می شوند.
تقویت کننده های کامپوزیت ها: تقویت کننده ها را تقریبا می توان به سه دسته الیاف، ذرات و ویسکرها تقسیم کرده که هر یک کاربرد منحصر به فرد دارند.
الف) الیاف: موادی هستند که در مقایسه با سایر مواد یک محور بسیار بلند دارند و استحکام آنها در جهت طول نسبت به سایر جهات به مراتب بیشتر است.
الیاف شیشه: از قرنها پیش مورد استفاده قرار می گرفته اند در دوره رنسانس برای استحکام به اجسام ظریف و نازک رشته های شیشه ای به شکل متقاطع یا بافته متصل می شد.
شیشه یک ماده بی شکل است که استخوان بندی آن سیلیس و ترکیبات و خواص ویژه آن ناشی از وجود اجزای اکسیدیمختلف است چهار نوع شیشه که بیشتر در کامپوزیت ها مورد استفاده قرار می گیرند عبارتند از: شیشه E شیشه S شیشه C و کوارتز .
الیاف کربن _ گرافیت: تقاضا برای الیاف تقویت کننده با استحکام و مدول بالا منجربه توسعه الیاف کربن یا گرافیت شده است.
الیاف گرافیت الیافی کربنی هستند که تحت عملیات حرارتی بالاتر از 1650 درجه فارنهایت قرار گرفته اند. رسانایی نسبتا خوب الکتریسیته، سبکی، استحکام، مقاومت در برابر خزش و میرایی عالی از جمله مزایا آن است. ازجمله معایب آن نیز ترد بودن، مقاومت ضربه ای کم و گران بودن است. آلات موسیقی، صنایع هسته ای و بلندگو دست وپای مصنوعی از جمله کار برد های این تقویت کننده هاست.
الیاف آلی: متداول ترین آنها آرامیدها هستند و کولار یکی از متداول ترین آرامیدها است. شکنندگی آنها کمتر از شیشه یا کربن است نسوزند و در برابر اغلب حلالها مقاومند به طوری که در متداولترین حلالها به جز اسیدها و بازهای خیلی قوی بیش از 90% استحکام کششی خود را حفظ می کنند.
از کاربردهای آنها در زره پوش تانکها و نفربرها، تقویت کننده تایرها، جلیقه ضد گلوله است
تقویت کننده های ذره ای: اغلب از ذرات برای کاهش قیمت رزین های تقویت شده ترموست یا ترموپلاستیک استفاده می شود مانند: تالک، کربنات، کلسیم، خاک اره و پنبه نسوز برخی از این مواد هستند.
تقویت کننده های ویسکر: تک بلورهایی که نسبت معیین طول به عرض آنها بیش از یک است طول آنها معمولا mm2 تا mm50 است استحکام آنها بسیار زیاد است در کاربدهایی از رزین مورد استفاده قرار می گیرند که نمی توان از الیاف استفاده کرد.
این مواد ظرفیت حرارتی زیادی دارند به همین علت در زمینه های فلزی و سرامیکی بیشتر مورد استفاده قرار می گیرند.قیمت بالا و لزوم جمع آوری مرتب کردن وتوزیع آنها به شکل مطلوب کاربرد آنها را محدود کرده است.
پوشش های نانوکامپوزیتی: یکی از نمونه های کاربرد عملی نانوتکنولوژی نشاندن لایه های نانوکامپوزیتی برروی مته های حفاری است. اخیرا شرکت ابزار سازی وگا نوع جدیدی از پوشش نانوکامپوزیتی موسوم به پوشش TH ارائه کرده است که استفاده از آن در ابزارهای حفاری موجب افزایش طول عمر وهمچنین بهبود کیفیت کار این ادوات می شود.
راندمان ابزارهای حفاری با استفاده از این ابزارها دو برابر مته های معمولی است. تولید حرارت کمتر در هنگام استفاده از مته هایی که با پوشش جدید بهبود یافته اند موجب می شود که بتوان از این مته ها در سوراخکاری خشک استفاده نمود.

منبع:
http://www.polymerscience.mihanblog.com/post/22
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
كامپوزیت در بیو متریال

كامپوزیت در بیو متریال

Composite bio material
اگر چه استفاده از مواد فلزی پر مدول برای نگهداری و محكم ساختن استخوان های داخلی موفقیت آمیز بوده است زمینه برای توسعه مواد پلیمری غیر جاذب در این خصوص وجود دارد . یك گروه از كامپوزیت ها كه تا كنون بررسی شده است كامپوزیت های بر پایه پلی استر ها یا پلی ارتو استرهای تقویت شده با الیاف آلی یا كلسیم یا كلسیم / سدیم می باشد . به عنوان مثال Poly – L - Lactide تقویت شده با الیاف پلی گلیلولید افزایش زیادی در استحكام و صلبیت نشان می دهد . مثال دیگر كامپوزیت پلی لاكتیك تقویت شده با الیاف غیر آلی كلسیم فسفات می باشد . لازم به ذكر است استفاده از این مواد هنوز در مرحله توسعه می باشد .
ترمیم استخوان شكسته
استخوان از آنجا كه خواصش تابع جهات می باشد یك ماده آن ایزوتروپیك به شمار می رود . استخوان كلا در كشش و برش بویژه در امتداد صفحه طولی ضعیف است . تحت بارگذاری اضافی یا ضربه استخوان می شكند , بسته به اندازه ترك , جهت , مرفولوژی و محل ترك انواع شكست را در استخوان خواهیم داشت .
شكست های استخوان به طرق گوناگونی تحت عمل و مداوا قرار می كیرند كه این روش ها را می توان به دو نوع فیكسالسیون ( تثبیت ) داخلی و خارجی دسته بندی نمود .
در فیكسالسیون خارجی به واز كرذن محل شكست نیازی نیست در صورتیكه در فیكسالسیون داخلی به این عمل نیاز می باشد . در فیكسالسیون خارجی قطعات استخوان به كمك وسایل گونگون نظیر نوارها و قالبها یا بریسها و سایر سیستمهای تثبیت كننده خارجی در كنار هم نگه داشت .مواد قالبی یا بانداژهای پلاستری در ساخت نوارها , قالب ها یا بریس ها مورد استفاده قرار می گیرند .

امروزه محققان به منظور استخوان سازی بهتر پیچهای كامپوزیتی از جنس كربن / C4 و CF/PEEK نیز تولیدنموده اند.به این ترتیب با بكارگیری پلیت ها و پیچهای كامپوزیتی پلیمری , مشكل خوردگی كه در پیچ و پلیت های فلزی دیده میشود دیگر وجود نخواهد داشت علاوه بر این كاشت های فلزی ، تستهای پس از عمل كه یا به كمك اشعه ایكس و یا بصورت روش های ترموگرافی كامپیوتری و تصویر برداری ، رزونانس مغناطیسی صورت می گیرند را بخاطر انعكاس امواج و ایجاد محصولات نامطلوب مشكل می سازند . برای رفع چنین مشكلاتی دو محقق با نام های برانتیگان و چیاتپا قفس هایی از جنس كامپوزیتهای CF/PEEK و CF/PS ساختند
- « جایگزینهای مفاصل » :
مفاصل به بدن و قسمت های مختلف آن امكان حركت می دهند .
روش جراحی آزتوپلاستی یك روش جراحی مناسب برای تشخیص و تخفیف دردهای مفصلی می باشد . امروزه از آرتوپلاستی جایگزین كل مفصل بعنوان یك موفقیت بزرگ در جراحی ارتوپدیك یاد می شود . مشخص شده كه در ساقه های فلزی شل شدگی پروتز و از كار افتادگی احتمالی می تواند از طریق طراحی دقیق تر پروتز و با استفاده از یك ماده با سفتی كمتر و با خواص مكانیك مشابه با استخوان كاهش می یابد . با این وجود و بخاطر نیاز به استحكام بالا در پروتز لگن ، مواد مناسب برای این كاشت ها بسیار محدود هستند . خوشبختانه كامپوزیتهای پلیمری پیشرفته می توانند استحكامی قابل مقایسه با فلزات را ایجاد كنند . در این راستا امروزه محققین ساقه های كامپوزیتی CF/C و CF/PC را عرضه نموده اند مشخص شده كه در این كاشت ها به نسبت كاشتهای معمولی با سفتی بالا ، جوش خوردگی و اتصال سریع به استخوان وجود دارد .آنالیزهای الحان محدود و تست های INVITRO نشان داده اند كه در مقایسه با ساخته های فلزی در ساقه های كامپوزیتی سطح مناسب تربی از تنش ها و دفرماسیون ایجاد می گردد .
- « كاربردهای دندانی » :
تمامی دندانها از دو بخش ساخته شدهاند ، تاج و ریشه ، كه با لثه از هم متمایز می شوند . ریشه در یك حفره به نام آل دئولوس ، در استخوان هایی ماندیبولار ( فك پایین ) و ماگزیلاری ( فك بالا ) قرار می گیرد . دندان ها با یك لایه سطحی نازك از مینای دندان كه به شدت مینرالی می باشد ( 190% پوشانده می شوند . نمك های كلسیم لایه مینا بصورت بلورهای ریزی در جهت عمود بر سطح چیده شده اند و عاج دندان را مورد حمایت قرار می دهند . عاج یك بافت تقریباً نرم می باشد كه از یكسری لوله های ریز پر از مایعی كه به داخل محفظه پالپ ( مغز دندان ) كشده می شوند ، برخوردار است . محفظه پالپ عصب را در خود دارد كه این عصب در ادامه به ریشه مركز دندان كشده می شود. مواد ترمیمی دندان همانطور كه از نامش بر می آیاد برای پر كردن حفرات دندان ها و برخی اوقات پوشاندن بی رنگی ها یا تصحیح طرح و تنظیم شكل عیوب به كار می روند . آمالگام ، طلا ، آلومینا ، زیركونیا ، رزین های اكرلیك و سیمان های لیلیكاتی متداولاً‌ برای ترمیم دندانهای پوسیده مورد استفاده قرار می گیرد . آمالگام و طلا عمدتاً در ترمیم دندانهای خلفی به كار می روند و بخاطر نازیبایی در دندانهای جلویی به كار نمی روند .
امروزه كامپوزیتهای ترمیمی دندانی با ضریب شكستگی ( انكسارتور ) معادل مینای دندان جایگزین این مواد گردیده اند و بطور راپچی برای ترمیم دندان های خلفی و همچنین دندانهای قدامی ( جلویی ) بكار می روند . این ترمیم ها در برابر تمركزهای موضعی – بارگذاری خستگی چرخه ای ، سایش و فرایند های تخریب شیمیایی كه ممكن است در تمامی نواحی محیط دهان صورت گیرند مقاومت می كنند

منبع:
http://www.polymerscience.mihanblog.com/post/28
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
شرکت هندی Kemrock، اولین محصولات بومی الیاف کربن خود را عرضه کرد...
الیاف کربن تولیدی این شرکت با نام تجاری JAITEC و به شکل روینگ 12k و 24K و نیز پارچه تک جهتی و بافت ساده عرضه می شود. استحکام الیاف MPa 2000-3000 و مدول آنها 250-180 GPa ذکر شده است.
این شرکت که در سال 1981 تاسیس شده است، محدوده وسیعی از محصولات شامل مواد اولیه و قطعات مهندسی کامپوزیتی را عرضه می نماید. این محصولات شامل انواع رزینهای گرماسخت، پره توربین بادی، قطعات داخلی و خارجی واگن، سینی کابل و انواع قطعات پالتروژن، لوله، تیرهای روشنایی و الیاف کربن می باشد.
همچنین این شرکت اخیراً با همکاری شرکت DSM اقدام به ساخت اولین مدرسه کامپوزیتی در هند نمود که برپایی آن ظرف 6 روز انجام شد.
منبع:
http://www.irancomposite.net/index....ia-carbon-fiber&catid=41:world-news&Itemid=67
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
الیاف کربن گرافیتی

[h=1]الياف گرافيتي Graphite fiber[/h]

الیاف کربن يا گرافيتي نسل جدیدی از الیاف پر استحکام است . این مواد از پرولیز کنترل شده گونه هایی از الیاف مناسب تهیه می شود ؛ به صورتی که بعد از پرولیز حداقل 90 درصد کربن باقی بماند . الیاف کربن نخستین بار درسال 1879 میلادی زمانی که توماس ادیسون از این ماده به عنوان رشته پرمقاومت در ایجاد روشنایی الکتریکی استفاده کرد ، پای به عرصه علم و فن آوری گذاشت . با این حال درآغاز دهه 1960 بود که تولید موفق تجاری الیاف کربن ، با اهداف نظامی و به ویژه برای کابرد در هواپیمای جنگی ، آغاز شد . دردهه های اخیر ، الیاف کربن در موارد غیر نظامی بسیاری ، همچون هواپیماهای مسافربری و باربری ، خودروسازی ، ساخت قطعات صنعتی ، صنایع پزشکی ، صنایع تفریحی – ورزشی و بسیاری موارد دیگر کاربردهای روزافزونی یافته است . الیاف کربن در کامپوزیت های با زمینه سبک مانند انواع رزین ها به کار می رود . کامپوزیت های الیاف کربن در مواردی که استحکام و سختی بالا به همراه وزن کم و ویژگی های استثنایی مقاومت به خوردگی مدنظر باشند ، یگانه گزینه پیش روست . همچنین هنگامی که مقاومت مکانیکی در دمای بالا ، خنثی بودن از لحاظ شیمیایی و ویژگی ضربه پذیری بالا نیز انتظار برود ، بازهم کامپوزیت های کربنی بهترین گزینه هستند . با توجه به این ویژگی ها ، پهنۀ گسترده موارد کاربرد این ماده در گستره های گوناگون فن آوری به سادگی قابل تصور است .





الياف گرافيتي





میزان تولید الیاف کربن از 1992 تا 1997 رشد 200 درصدی در این فاصله 6 ساله داشته که خود نشانگر اهمیت تکنولوژی این ماده است . هم اکنون ، ایالات متحده آمریکا نزدیک به 60 درصد تولید جهانی الیاف کربن را به مصرف می رساند و این در حالی است که ژاپن تلاش می کند به میزان مصرفی برابر با 50 درصد تولیدات جهانی این محصول دست یابد . ژاپن به واسطه شرکت صنعتی توری ، خود بزرگترین تولید کننده الیاف کربن درجهان است . هم چنین عمده ترین تولید کننده الیاف کربن با استفاده از پیش زمینه قیر ، ژاپن است . پیشگویی برای سال 2013 میلادی ... سال 2013 است . خودرویی جدید به نام "BLACKBEAUTY " 100 MPG بدلیل این که ضمن دارا بودن بالاترین کارایی ، به میزان 100 درصد نیز دوستدار محیط زیست شناخته شده ، طرفداران بسیار زیادی دارد . این خودرو پس از انقراض نسل خودروهای فولادی با سازه ای تمام کامپوزیت برپایه کربن متولد شده است . با استفاده از مواد کربنی در ساخت بدنه و سازه های اصلی این خودرو مانند شاسی ، موتور و سیستم های انتقال نیرو ، کاهش وزن به دست آمده موجب مصرف اندک سوخت شده است . این مواد پیشرفته به همراه اندکی فلزات سبک که عمدتا ً در اتصالات به کار می روند ، اقتصاد خودرو را از لحاظ میزان مصرف سالیانه سوخت با انقلابی عظیم مواجه کرده است . این مواد سبک در فریم شاسی ، موتور کاتالیتیک با بازده بالا ، در باتری های لیتیمی و موتورهای الکتریکی ، پانل های بدنه ، مخزن سوخت و مواد پیشرفته نگه دارنده متان که سوخت اصلی خودروست و خلاصه در تمام المان های اصلی که چنین وسیله نقلیه کم مصرف با توانایی های بسیار بالا را می سازد ، به کار رفته است . پانل های بدنه از کامپوزیت های کربنی به روش SMC با سطوح بسیار صاف و آماده رنگ کاری ساخته شده است . فیبریل های کربنی در اندازه های زیر میکرون با ویژگی هدایت الکتریکی ، سطح قطعات پانل های بدنه را به سادگی دارای ویژگی الکترو استاتیک می کنند . از سوی دیگر چون کامپوزیت پلیمری تقویت شده با الیاف کربن از نظر شیمیایی خنثی است به تخریب در برابر پرتو فرا بنفش حساس نیست ، در نتیجه پانل های بدنه به هیچ نوع عملیات پایانی نیاز ندارند . بخش های دیگری که زیاد به آن ها توجه نمی شود ، مانند درموتور ، هوزینگ ها و گیربکس ها تماما ً از کامپوزیت کربنی به روش قالب گیری تزریقی ساخته شده و جایگزین قطعات سنگین ریخته شده فلزی شده اند . مخزن سوخت ، کامپوزیت کربنی ساخته شده به روش پیچش الیاف است که مملو از کربن فعال و فیبریل های کربنی است که موجب افزایش قابلیت نگهداری گاز مایع در فشارهای پایین می شود . موتور کاتالیتیک از کاتالیست های پوشش داده شده برروی کره ها و لوله های ریز شیاردار کربنی که به کربن توخالی معروف هستند و در واقع نوعی از الیاف کربن سوراخ شده هستند ، استفاده می کند . این واحد مرکزی تولید توان الکتریکی که درواقع قلب سیستم به حساب می آید ، به دلیل استفاده زیاد از فرآورده های الیاف کربن ، قادر است کارایی خود را در دماهای بسیار بالایی که الزاما ً در اثر کارکرد موتور پدید می آید ، به خوبی حفظ کند . این دلیل اصلی بالا بودن غیرمعمول بازده چنین خودرویی است . از سوی دیگر مشکلات مربوط به آن دسته از شکست های قطعات که ناشی از اختلاف در ضرایب انبساط حرارتی درنسل خودروهای فلزی بود ، به واسطه استفاده از قطعات کامپوزیتی کربنی ، به طور کامل از بین رفته است . مهندسین مواد ، با دست کاری در میزان جهت یافتگی الیاف کربن ، نوع جدیدی از الیاف را ساخته اند که به طور استثنایی دارای هدایت حرارتی یک بعدی بسیار زیادی بوده و بدین وسیله توانسته اند دستگاههای سرمازا را با بازده بسیار بالا در موتور این خودرو به کار برند . در سیستم باتری یونی لیتیم / لیتیم از آندهای کربنی و کاتدهای کامپوزیت کربنی استفاده شده است . سیستم جدید تهویه هوا با استفاده از رادیاتورهای پلاستیکی تقویت شده با الیاف کربن ، محفظه های کربنی و فوم های کربنی عایق ، بیشترین شرایط رفاه و آسایش سرنشین را به همراه حذف کامل گازهای ضد ازن ، فراهم آورده است . سیستم GPS تعبیه شده برای ارتباطات ماهواره ای ، تلفن همراه ، دستگاه دورنگار و رایانه های on-board همگی ضمن رعایت طراحی ارگونومیک از قاب های کامپوزیت کربنی که هدایت الکتریکی مناسبی دارند ، بهره می برند . قرار دادن المان های جهت دار کامپوزیتی بر پایه کربن در جهت اعمال لنگر ، سیستم تعلیق کربنی را در این خودرو به گونه ای ساخته که موجب حذف بسیاری از قطعات سنگین فلزی شده و همین موضوع خود موجب عملکرد بهتر سیستم تعلیق شده است . روتورهای کربنی ترمز و لنت ترمزهای گرافیتی ، وزن مجموعه سیستم ترمز را در راستای عملکرد بهتر ترمز کاهش داده است . رینگ های تقویت شده با الیاف کربن ضمن کاهش وزن موجب سرد کار کردن مجموعه ترمز و درنتیجه بالاتر رفتن ضریب امنیت ترمز می شود . تایرهای با فرمولاسیون پیشرفته شامل فیبریل های کربن و بلوک های کربنی جهت دار به همراه الیاف کربن بافته شده به صورت شعاعی ، ضمن سبکی موجب حذف مقاومت غلطشی تایر و سرد ماندن آنها در طول حرکت می شود . المان های تعلیق ، رینگ ها و تایرهای ساخته شده از الیاف کربن باعث برقراری مطمئن اتصال با زمین و در نتیجه کمینه شدن احتمال آتش سوزی دراثر بارهای الکترواستاتیک و افزایش امنیت و راحتی سرنشین در هنگام سوار و پیاده شدن از خودرو می شود . با استفاده روز افزون از الیاف کربن در ساخت خودروهای پیشرفته ، مصرف سالیانه بنزین به سرعت رو به کاهش گذاشته و نیاز به واردات سوخت های فسیلی را که باعث عدم تعادل تجاری می شود به حداقل می رساند . درعوض به منظور گسترش واحدهای تولید مواد کربنی جدید با کاربردهای روبه رشد در ساخت خودروهای کربنی ، میلیون ها فرصت شغلی در کشور پدیدار می شود . الیاف کربن را می توان براساس مدول الاستیک ، استحکام و دمای نهایی عملیات حرارتی به گروههای زیر دسته بندی کرد : دسته بندی براساس ویژگی ها : § الیاف کربن با ضریب کشسانی بسیار بالا ؛ بیشتر از 450 گیگا پاسکال § الیاف کربن با ضریب کشسانی بالا؛ بین 350 تا 450 گیگا پاسکال § الیاف کربن با ضریب کشسانی متوسط ؛ بین 200 تا 350 گیگا پاسکال § الیاف کربن با استحکام کششی بالا و ضریب کشسانی پایین ؛ استحکام کششی بیش از 3 گیگا پاسکال و ضریب کشسانی کم تر از 100 § الیاف کربن با استحکام کششی بسیار بالا ؛ بالاتر از 5/4 گیگا پاسکال دسته بندی براساس نوع پیش زمینه : § الیاف کربن با پیش زمینه الیاف پلی اکریلونیتریل § الیاف کربن با پیش زمینه قیر صنعتی § الیاف کربن با پیش زمینه قیر مزوفاز § الیاف کربن با پیش زمینه قیر ایزوتروپیک § الیاف کربن با پیش زمینه الیاف ریون ( ابریشم مصنوعی ) § الیاف کربن با پیش زمینه فاز گازی و دسته بندی براساس دمای نهایی عملیات حرارتی : § الیاف نوع 1 ، دمای عملیات حرارتی بالاتر از 2000 درجه سانتی گراد ؛ تولید کننده الیاف HM § الیاف نوع 2 ، دمای عملیات حرارتی حدود 1500 درجه سانتیگراد ؛ تولید کننده الیاف HS § الیاف نوع 3 ، دمای عملیات حرارتی کم تر یا حدود 1000 درجه سانتی گراد ؛ تولید کننده الیاف با ضریب استحکام پایین ساخت الیاف کربن درفرهنگ واژگان نساجی آمده است : الیاف کربن به الیافی گفته می شود که دست کم دارای 90 درصد کربن هستند و از پیرولیز کنترل شده الیافی ویژه به دست می آیند . اصطلاح الیاف گرافیتی درمورد الیافی به کار می رود که کربن آنها بیش از 99 درصد باشد . انواع گوناگونی از الیاف به عنوان پیش زمینه تولید الیاف کربن وجود دارد که دارای ویژگی های انحصاری و مورفولوژی ویژه هستند . پرمصرف ترین الیاف پیش زمینه عبارتند از : الیاف پلی اکریلونیتریل ( PAN ) ، الیاف سلولزی ( مانند ریون ویسکوز و پنبه ) ، قیر حاصل از قطران ذغال سنگ ( Coal tar pitch ) و نوع ویژه ای از الیاف فنلیک . الیاف کربن از طریق پیرولیز پیش زمینه های آلی که به شکل الیاف هستند ، ساخته می شود . در واقع انجام عملیات حرارتی موجب حذف عناصری مانند اکسیژن ، نیتروژن و هیدروژن و باقی ماندن کربن به شکل الیاف می شود . در پژوهش هایی که برروی الیاف کربن انجام شده ، مشخص گردیده که ویژگی های مکانیکی الیاف کربن با افزایش درجه تبلور و میزان جهت گیری الیاف پیش زمینه و کاهش نواقص موجود در آنها ، بهبود می یابد . بهترین راه برای دست یابی به الیاف کربن با ویژگی های مناسب ، استفاده از الیاف پیش زمینه با بیشترین مقدار جهت گیری و حفظ آن در طی فرآیندهای پایدار سازی و کربنیزاسیون از طریق اعمال کشش در طول فرآیند است . تولید الیاف کربن از پیش زمینه پلی اکریلونیتریل برای تولید الیاف کربن با کیفیت بالا از پیش زمینه PAN و سه مرحله اساسی وجود دارد : 1- مرحله پایدار سازی اکسیدی : در این مرحله الیاف PAN هم زمان با اعمال کشش مورد عملیات حرارتی اکسیدی در محدوده دمایی 200 تا 300 درجه سانتی گراد قرار می گیرد . این عملیات ، PAN گرما نرم را به ترکیبی با ساختار نردبانی یا حلقه ای تبدیل می کند . 2- مرحله کربنیزاسیون : بعد از اکسیداسیون ، الیاف بدون اعمال کشش در پیرامون دمای 1000 درجه سانتی گراد در محیط خنثی ( معمولا ً نیتروژن ) برای مدت چند ساعت ، مورد عملیات حرارتی کربنیزاسیون قرار می گیرند . درطی این فرآیند ، عناصر غیرکربنی آزاد می شود و الیاف کربن با بالانس جرمی 50 درصد به نسبت الیاف PAN نخستین ، به دست می آید . 3- مرحله گرافیتاسیون : بسته به نوع الیاف کربن مورد نظر ، از لحاظ ضریب کشسانی ، و اعمال این مرحله در محدوده دمایی مابین 1500 تا 3000 درجه سانتیگراد ، موجب بهبود درجه جهت گیری کریستالیت های کربنی درجهت محور الیاف و بنابراین مایه ی بهبود ویژگی ها می شود . تولید الیاف کربن از دیگر پیش زمینه ها نیز کمابیش دارای مراحل اصلی است که در مورد تولید از پیش زمینه PAN آورده شد . ساختار الیاف کربن مشخصه های ساختاری الیاف کربن بیشتر با دستگاههای میکروسکپ الکترونی و پراش پرتوی ایکس قابل بررسی است . برخلاف گرافیت ، ساختار کربن بدون هرگونه نظم سه بعدی است . در الیاف کربن برپایه PAN ، ساختار الیاف در طی عملیات پایدار سازی اکسیدی و متعاقب آن کربنیزاسیون ، از ساختار زنجیره ای خطی به ساختار صفحه ای تغییر می کند . به این ترتیب صفحات اصلی در پایان مرحله کربنیزاسیون در جهت محور طولی الیاف قرار می گیرند . بررسی های اشعه X با زاویه تفرق باز ( Wide angle X-ray ) نشان می دهد که با افزایش دمای عملیات کربنیزاسیون ، ارتفاع انباشتگی و مقدار جهت گیری صفحات اصلی ، افزایش می یابد . قطر منوفیلامنت های PAN تأثیرعمده ای بر نفوذ عملیات کربنیزاسیون در الیاف کربن تولیدی دارد ، به همین دلیل تغییر در ساختار کریستالوگرافی پوسته و هسته هر منوفیلامنت در الیافی که کاملا ً پایدار شده اند ، به وضوح قابل مشاهده است . پوسته از جهت گیری مرجح طولی بالا به همراه انباشتگی زیاد کریستالیت ها برخوردار است درحالی که هسته ، جهت گیری کم تر صفحات اصلی و حجم کم تر کریستالیت ها را نشان می دهد . عموما ً دیده شده که هرچه استحکام کششی الیاف پیش زمینه بیشتر باشد ، ویژگی های کششی الیاف کربن به دست آمده نیز بیشتر می شود . چنان چه مرحله پایدار سازی به صورتی مناسب انجام گیرد ، در آن صورت استحکام کششی و ضریب کشسانی با کربنیزاسیون تحت کشش ، به مقدار بسیار زیادی در محصول کربنی نهایی بالا می رود . بررسی های انجام شده با دستگاههای پراش پرتوی ایکس و پراش الکترونی نشان داده است که در الیاف کربن با ضریب کشسانی بالا ، کریستالیت ها پیرامون محور طولی الیاف قرار گرفته اند . این درحالی است که صفحات لایه ای با بیشترین جهت یافتگی به موازات محور الیاف استقرار یافته اند . به طور کلی استحکام الیاف کربن به نوع پیش زمینه ، شرایط فرآیند ، دمای عملیات حرارتی و وجود نواقص ساختاری در الیاف ، ارتباط دارد . در الیاف کربن با پیش زمینه PAN و افزایش دما تا 1300 درجه سانتی گراد مایه ی افزایش استحکام می شود ولی پس از 1300 درجه ، استحکام به آرامی کم می شود . این موضوع در مورد ضریب کشسانی نیز صادق است . الیاف کربن بسیار ترد هستند . لایه ها در الیاف با اتصالات ضعیف و اندروالسی به هم دیگر متصل شده اند . تجمع فلس مانند لایه ها موجب می شود تا رشد ترک در جهت عمود برمحور الیاف به آسانی صورت بگیرد . در خمش ، الیاف در کرنش های بسیار پایین می شکنند . با تمام این معایب ، الیاف کربن از نقطه نظر مجموع ویژگی های شیمیایی ، فیزیکی و مکانیکی منحصر به فردی که دارد ، در بسیاری از عرصه های مهندسی و علوم در دو دهه اخیر تقریبا ً بدون رقیب مانده است . کاربردهای الیاف کربن الیاف کربن در موارد صنعتی گوناگونی به کارمی رود که در این جا نمونه هایی از آن ارایه شده است : صنعت حمل و نقل کاربردهای صنعت حمل و نقل بدین گونه اند : مخازن گاز مایع خودروها ، قطعات موتور ، کمک فنر ، شفت های انتقال نیرو ، ملحقات چرخ و جعبه فرمان ، لنت های ترمز ، بدنه ماشین های مسابقه ، بدنه کشتی ها و فنرهای لول . صنایع ساختمانی و معماری مواد ساختاری پل ها ، ساز و کار پل های جمع شونده ، تقویت کننده بتن های پرمقاومت ، سازه های باربر ، دیوارهای جداکننده ، سازه های پیش تنیده برای کمک به سازه های بتنی حمل بار ، استفاده در تعمیر ساختمانهای در حال تخریب ، استفاده در جداره داخلی تونل ها برای جلوگیری از ریزش تونل و استفاده در رمپ ها برای جلوگیری از ریزش خاک را می توان از کاربردهای ساختمانی این الیاف دانست . صنایع هواپیما سازی و هوافضا سازه های داخلی کابین مسافرین اعم از پانل های جداره صندلی ها و میزها ، پوشش ها ، اجزای سازه ای ماهواره ها ، لبه بال هواپیماهای جنگنده ، نوک هواپیماهای مافوق صوت ، نازل موشک های دوربرد و قطعات حساس موتور هواپیماها نیز می توانند دارای الیاف کربن باشند . صنایع پزشکی الیاف کربن در ساخت استخوان مصنوعی ، اجزای تجهیزات پرتوی ایکس ، صندلی های چرخدار ، انواع اجزای مصنوعی بدن برای معلولین و دریچه قلب به کار می روند . بخش انرژی از جمله کاربردهای الیاف کربن در بخش انرژی ، می توان بدین موارد اشاره کرد : باتریهای سوختی ، پره های توربین و پره های آسیاب های بادی برای تولید برق از انرژی باد . صنایع الکترونیک ، تجهیزات الکتریکی و ماشین سازی این کاربردها عبارتند از : قاب رایانه های همراه ، اجزای رایانه ها ، بازوی ربات های صنعتی ، چرخ دنده ها ، غلتک ها ، چرخدنده های پرسرعت ، قطعات خود روغنکاری شونده ، آنتن ها ، مواد عایق الکتریکی ، مخازن تحت فشار ، غلتک چاپ گرها و قاب تلفن های همراه .



منبع:
http://www.ticir.ir/persian/carbon-fiber/graphite-fiber.html
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
شرکت Innovative Composites International قراردادی به ارزش 68 میلیون دلار برای اجرای پروژه بزرگ خانه سازی در هائیتی و غنا بدست آورد.
طبق این قرارداد، شرکت ICI، صد و هشتاد و پنج هزار متر مربع (185,000) خانه کامپوزیتی اجرا خواهد نمود که قیمت هر متر مربع آن بر اساس مساحت 81 متری یک خانه، 360 دلار به ازای هر متر ارزیابی شده است. انتظار می رود اولین محموله این خانه ها در اولین فصل سال آینده راهی منطقه اجرایی شود.



منبع:
ایران کامپوزیت:
http://www.irancomposite.net/index....omposites-house&catid=41:world-news&Itemid=67
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
بررسی الیاف کربن و کاربرد در ساختار کامپوزیت:

شرايط مورد بحث در طول فرآيند پليمريزاسيون تا ساختار گرافيتي، به دقت انتخاب و كنترل مي‌شوند. در طول اين فرآيند عناصر غير كربني بصورت گاز خارج شده، اجزاء كربني باقي مي‌مانند. مهمترين شكل الياف كربن، پارچه است كه در بافتهاي مختلف وجود دارد.
اگرچه اكثر الياف مورد استفاده در صنعت كامپوزيت از جنس شيشه مي‌باشد ولي مدول آن نسبتا پايين است. در سالهاي پيش تلاشهاي زيادي انجام گرفت تا تقويت كننده‌هاي جديدي با تبديل حرارتي الياف آلي به الياف كربن ساخته شود.

الياف حاصل به سرعت كاربرد وسيعي در كامپوزيتهاي فنوليكي به منظور استفاده در عايقهاي فداشونده در صنايع نظامي پيدا كرد. مشخصه الياف كربن، سبكي، استحكام و سفتي بالا مي‌باشد. همه انواع الياف كربن از پيروليز الياف آلي در يك محيط خنثي بدست مي آيد. سه منبع مهم عمده براي ساخت الياف كربن وجود دارد:
پلي اكريلونيتريل (pan) رايون و قير

طرز تهيه:
كوپليمر متيل اكريلات و ايتاكونيك اسيد
اكسيداسيون الياف اكريليك، به منظور تثبيت شكل الياف به هنگام فرآيند كربنيزه كردن است.
اولين مرحله در توليد الياف كربن با استفاده از PAN شامل كشش و اكسيداسيون مي‏باشد در اين مرحله ابتدا الياف تحت گرما بين 1300 - 500 درصد كشيده مي‏شوند كه اين امر باعث آرايش‏‏‏يابي بهتر زنجيره‏هاي ملكولي در جهت الياف مي‏شود. سپس در حاليكه هنوز الياف تحت تنش هستند در مجاورت هوا تا دماي°C 280 - 200 براي چند ساعتي حرارت داده مي‏شوند اين امر باعث جابجايي درون ملكولي و تشكيل زنجيره‏هاي نردبان مانند مي‏گردد. در اين مرحله عمل اكسيداسيون نيز صورت مي‏گيرد و تقريباً بيشتر گروههاي CH[SUB]2[/SUB] اكسيده مي‏شوند. در مرحله بعد الياف اكسيده شده، با حرارت دادن در دماي°C 1200-900 و در محيط خنثي (تحت گاز نيتروژن يا آرگون) كربونيزه مي‏شوند. تنش وارده به الياف از جمع‏شدگي (shrinkage) آنها جلوگيري مي‏كند و به آرايش ملكولي بهتر كمك مي‏نمايد. در اين مرحله با حذف بيشتر اتمهاي اكسيژن و نيتروژن، الياف عمدتاً حاوي اتمهاي كربن خواهند بود كه در حلقه‏هاي شش وجهي مستقر در صفحات نسبتا موازي قرار گرفته‏اند. الياف حاصل از اين مرحله عمدتا متخلخل‏اند و دانسيته الياف در اين حالت حدود g/cm3 74/1 مي‏باشد. الياف حاصل از اين مرحله داراي مدول نسبتا كم و استحكام بالا مي‏باشند.

در مرحله سوم عمل اصلاح حرارتي (heat treatment) بر روي الياف مرحله دوم در محيط خنثي و در دماي °C2800 صورت مي‏گيرد كه نتيجه آن نظم بيشتر ساختمان كريستالي الياف مي‏باشد. اين مرحله را گرافيته‏كردن مي‏نامند ودر اين مرحله با كاهش ميزان تخلخل الياف دانسيته آنها تا g/cm[SUP]3[/SUP]2 افزايش مي‏يابد و اليافي با مدول بالا اما استحكام كششي كمتر از مرحله دوم بدست مي‏آيند. راندمان توليد الياف با استفاده از PAN حدود 50% مي‏باشد.

شكلهاي مختلف الياف از قبيل رشته، پارچه و الياف كوتاه از اين ماده وجود دارد.
روينگ كربن​

پارچه كربن​
[FONT=tahoma,arial,helvetica,sans-serif]در ابتدا دو نوع الياف كربن با پايه [FONT=tahoma,arial,helvetica,sans-serif]pan وجود داشت كه استحكام و مدول آنها با هم تفاوت داشت:
الياف كربن با استحكام بالا (strength ( Highيا HSكه از فرآورش در دماي [SUP]O[/SUP]C 1500 بدست مي‌آمد و بعنوان نوع دو درجه‌بندي مي‌شد.
با افزايش دماي فرآورش، مدول نيز افزايش مي‌يافت و نوع مدول بالاي اين الياف (Modulus High ) يا HM كه نوع يك درجه بندي مي‌شد در دماي بالاتر ازدو هزار و پانصد درجه توليد مي‌شد.
با اعمال كمي كشش و افزايش آرايش يافتگي و با كاهش قطر الياف از 7 به 5 ميكرومتر، استحكام و مدول الياف افزايش مي‌يابد. اين الياف، الياف با مدول متوسط (modulus Intermediate) يا IM نام دارد. در جدول زير برخي خواص اين الياف مشاهده مي‌شود.
[/FONT][/FONT]



Properties
Strength, GPa​
Modulus, GPa Failure Strain
High Strength (HS) Type I​
3.0-3.3
220-240
1.3-1.4
High Modulus (HM), Type II
2.3-2.6
330-350
1.3-1.4
Intermediate Modulus (IM)​
2.9-3.2
280-300
1.0
pitch) itaconic ) يك ماده اوليه توليد الياف كربن مي‌باشد. اين ماده در يك محيط آبي سنتز شده و با *****اسيون جدا مي‌شود. سپس كوپليمر حاصل، با سرعت چرخش و كشش كنترل شده، به روش ريسندگي مرطوب تبديل به ليف مي‌شود. بدينوسيله ميزان آرايش الياف را كنترل مي‌كنند و هرچه بيشتر باشد مدول ليف نهايي بالاتر است.
مراحل توليد الياف كربن در اين روش عبارتند از :كوپليمريزاسيون، اكسيداسيون، كربنيزه كردن و گرافيته كردن
c 200 انجام مي‌شود. اين كار اجازه مي‌دهد آرايش القا شده به هنگام كشش در الياف حفظ شود.c 2500 انجام مي‌گيرد.filamant winding )، پلتروژن و فرآيند پاشش رزين (spray up)
2-‌ پيش آغشته (prepreg) تك جهته براي لايه گذاري
3-‌ الياف خرد براي تزريق يا قالبگيري فشاري
4‌-‌ نوار پيوسته براي پلتروژن
5-‌ پارچه بافته براي قالبگيري انتقال رزين (RTM) يا لايه گذاري
دو نوع مختلف الياف كربن در شكل ديده مي‌شود:
الياف كربن توليد شده، ذاتا چسبندگي كافي به پليمرها ندارند و اگر به همان صورت استفاده شوند، خواص تقويت كنندگي خوبي نشان نشان نمي‌دهند. بنابراين اصلاح سطح يك مرحله ضروري در آماده سازي الياف مي‌باشد.
روشهاي مختلفي براي اصلاح سطح الياف كربن وجود دارد، ولي معمولا اكسيداسيون آنوديك در يك الكتروليت آبي مانند بي كربنات آمونيم، ترجيح داده مي‌شود. اكسيداسيون پلاسما نيز بكار مي‌رود ولي به لحاظ تجاري رايج نشده است.
معمولاَ الياف كربن موجود در بازار اصلاح شده است ولي در موارد خاص مي‌توان الياف بدون اصلاح سطح نيز تهيه كرد.



منبع:

http://www.irancomposite.net
http://chemlog.blogfa.com/post-98.aspx
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
ترجمه:حبيب الله عليخاني
منبع : راسخون



کامپوزيت ها (coposites ):

در جوامع پشرفته نياز به مواد کامپوزيتي ديده مي شود .فايبرگلاس ( fiber glass)،که در اواخر دهه ي 1940 توليد شد اولين کامپوزيت مدرن است.و هم اکنون نيز متداولترين کامپوزيت مصرفي در کشورهاي مختلف جهان است .امروزه فايبرگلاس تقريباً 65 درصد از کامپوزيت هاي مصرفي در کشورهاي مختلف جهان را تشکيل مي دهد .اين کامپوزيت در بدنه هاي قايق (boot hulls)، تخته هاي موج سواري (surf boards)، وسايل ورزشي ( sporting goods) ، لاينينگ استخرهاي شنا(swimming poll lining)، پانل هاي ساختماني (building panels)و بدنه هاي ماشين (car bodies)کاربرد دارد .و اين امکان وجود دارد که شما از اين کامپوزيت استفاده کرده باشيد درحالي که نمي دانستيد که جنس آن را از فايبر گلاس است .
چه چيز از يک ماده ي کامپوزيت مي سازد ؟

مواد کامپوزيتي ازترکيب دو يا چند ماده با خواص متفاوت به وجود مي آيند . مواد مختلف با يکديگر مخلوط گشته تا خواصي بي همتا به ماده ي کامپوزيتي بدهد .اما ازلحاظ ساختار داخلي به آساني قابل تشخيص هستند .يعني مواد ترکيب شده در يک ماده ي کامپوزيتي به آساني قابل ديدن هستند .و در هم حل نشده اند و با هم پيوند نداده اند .
کامپوزيت ها درطبيعت نيزيافت مي شوند .يک تکه چوب کامپوزيتي ازالياف بلند سلولز (حالتي بسيار پيچيده از نشاسته )که با مواد بسيار ضعيف تري که ليگنين (lignin)ناميده مي شوند به هم اتصال پيدا کرده اند .سلولز همچنين در پنبه (linen)و کتان (cotton)نيز وجود دارد ، اما قدرت پيوند ليگنين است که باعث شده يک تکه چوب از يک تکه پنبه محکم تر باشد .
کامپوزيت ها مواد جديدي نيستند :

انسان ها از مواد کامپوزيتي به مدت هزاران سال استفاده مي کردند .مثلاً آجرهاي گلي که يک بيسکويت (تکه )از گل خشک شده است به آساني با يک خم کردن مي شکند .
که علت آن ايجاد يک نيروي کششي دريک سمت آن است .اما همين آجر يک ديوار خوب را مي سازد و علت اين امراين است که کليه ي نيروهاي وارده بر آجر از نوع فشاري است به عبارت ديگر يک تکه حصير ،مقاومت کششي خوبي دارد .اما اگر آن را مچاله کنيد (يعني آن را فشاردهيم )به آساني دفورمه مي شود .اما اگريک تکه از حصير را در يک آجر گلي تعبيه کنيد . و اجازه دهيد قطعه خشک شود .نتيجه ي کار آجري است که هم در برابر کشش و هم دربرابرگسيختگي مقاومت مي کند .و يک ماده ي ساختماني مناسب است .اگربخواهيم فني تر نگاه کنيم ، اين آجر داراي حصير هم مقاومت کششي (tenside shrongh)هم مقاومت فشاري (compressive strengh)خوبي دارد .
کامپوزيت معروف ديگر بتون است که از مصالح سنگي (سنگ و ماسه هاي ريز و درشت )تشکيل شده که به وسيله ي سيمان به هم ديگر متصل شده اند .بتون مقاومت خوبي در برابر فشار دادن و اين ماده را مي توان به وسيله ي افزودن ميله هاي فلزي (metallic rods)، سيم ها (wires)،توري (mesh)يا کابل ها (cables) کامپوزيت کرد تا در برابر کشيدگي نيزبتواند رفتار خوبي داشته باشد .( بنابراي بتون تقويت شده حاصل مي شود ).
ساختن يک کامپوزيت (making a composite):

بيشتر کامپوزيت ها فقط از دو نوع ماده ساخته شده اند .يک ماده [ ماتريکس (martix)يا اتصال دهنده ]دراطراف قرار گرفته و موجب اتصال کلوخه ها ، الياف يا خرده هاي ماده ي سخت تر [تقويت کننده (reinforcement)مي گردد .]
درمورد آجرهاي گلي اين دو وظيفه به وسيله ي حصير و گل انجام مي شود ، در بتون به وسيله ي سيمان و کلوخه هاي ماسه اي و دريک تکه چوب به وسيله ي سلولز و ليگنين انجام مي شود .درفايبرگلاس ، تقويت کننده الياف نازکي از شيشه است که عموماً مانند پارچه بافته مي شود .و زمينه ( matrix)ازماده ي پلاستيکي تشکيل شده است .
الياف رشته اي و نازک شيشه در فايبرگلاس در برابر کشش مقاومت بسيار بيشتري نسبت به فشار ازخود نشان مي دهند .اما اين الياف بسيار شکننده اند و اگر به تندي خم شوند از هم گسيخته مي شوند .ماتريکس نه تنها الياف را در کنار هم نگه مي دارد .بلکه مي تواند با توزيع تنش ها در کل ماده از کامپوزيت محافظت کند .
ماتريکس (زمينه )به حدي نرم است که مي توان با ابزار آلات آن را شکل دهي کرد .يا با حلال هاي مناسب آن را نرم کنيم و در صورت نيازآن را ترميم کنيم .هرتغييرشکل يک صفحه ي فايبرگلاس ، نياز به کشيده شدن مقداري از الياف شيشه را دارد .
و اين الياف در برابر آن مقاومت مي کنند ، بنابراين حتي يک صفحه ي نازک از فايبرگلاس بسيار محکم است .رنگ اين ماده همچنين مي تواند بسيار روشن باشد ، که خود يک مزيت دربسياري از کاربردهاست .
در دهه هاي اخير ،بسياري از کامپوزيت هاي جديد توليد شده است ، که بعضي از آنها خواص با ارزشي دارند .با دقت در انتخاب تقويت کننده ، زمينه پروسه ي ترکيب اين دو ماده درهم ، يک مهندس مي تواند خواص مختلف را ترکيب و به خاصيت هاي مد نظرش برسد .آنها مي توانند ، براي مثال يک صفحه ي کامپوزيتي بسيارمحکم در يک جهت بسازند (به وسيله ي موازي کردن الياف در يک جهت خاص که البته استحکام در جهت ديگر قطعه ممکن است بسيار کمتر از جهت هدايت شده ي ما باشد )که البته ايجاد استحکام در يک جهت از کارهايي است که مد نظر ماست و در بعضي از کاربردها به درد ما مي خورد .آنها همچنين مي توانند خواصي چون مقاومت در برابر گرما ، عوامل شيميايي و هوازدگي را به وسيله ي انتخاب زمينه ي مناسب در کامپوزيت ايجاد کنند .
مواد انتخابي براي زمينه (choosing materials for matrix):

براي زمينه ، در توليد بسياري از کامپوزيت هاي پيشرفته از پلاستيک هاي ترموست و ترموپلاست که زرين نيز ناميده مي شوند استفاده مي شود . پلاستيک ها، پليمرهايي هستند .که تقويت کننده ها را به هم چسبانده و کمک مي کند تا خواص محصول نهايي ايجاد شود .
پلاستيک ها گرمانرم (Thermosoftening plastics)همانگونه که از اسمشان پيداست در دماهاي پايين سخت اما هنگامي که به آنها گرما بدهيم نرم مي شوند .اگرچه اين مواد عموماً کمتر از پلاستيک هاي ترموست استفاده مي شوند.ولي مزايايي چون چقرمگي شکست بالاتر (fracture toughness)،دوام طولاني تر (longer shelflife)، قابليت بازيافت و محيط کاري ايمن تر و تميزتر (زيرا از حلال هاي آلي که براي پروسه ي سخت کردن است استفاده نمي شود )را داراست .
سراميک ها ، کربن و فلزات به عنوان زمينه براي برخي از اهداف خيلي خاص استفاده مي گردد .براي مثال :سراميک هنگامي استفاده مي شود که مواد با دماهاي بالا سر و کار دارند .[مثلاً مبدل هاي حرارتي (heat exchanging)].ازکربن نيز براي توليد محصولاتي که با سايش و پوسيدگي مواجه اند استفاده مي شود .[مثلاً يا طاقان ها (bearing)و گريبکس ها (gears)].
منبع:
http://www.www.www.iran-eng.ir/show...-سنتي-هستند؟?p=3558908&viewfull=1#post3558908
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
مواد انتخابي براي تقويت کننده (choosing materials for the rein for cement):

اگر چه الياف شيشه (glass fibres)از متداولترين تقويت کننده به حساب مي آيد .ولي بسياري از کامپوزيت هاي پيشرفته درحال حاضر از الياف نازک کربن خالص توليد مي شوند .


الیاف شیشه (Glass fibres)
الياف کربن (carbon fibres)ازالياف شيشه محکم تراند ، اما توليد آنها گران تر است .الياف کربن سبک اند درعين اينکه محکم نيز هستند .اين الياف در ساختار سفينه هاي فضايي و در توليدات ورزشي [ مانند وسايل گلف (golf clubs)]و به طور زياد شونده و با سرعت استفاده ي روز افزون به جاي فلز براي ترميم و جانشين استخوانهاي آسيب ديده مورد استفاده قرار مي گيرد .الياف محکم تر (و البته گران تر )ازالياف کربن الياف بورن (Boron fibres)هستند .
پليمرها نه تنها براي زمينه استفاده مي شوند .بلکه از آنها مواد تقويت کننده ي خوبي براي استفاده در کامپوزيت ها ايجاد شده است .کولار (kevlar)، الياف پليمري است که بي اندازه محکم است .و موجب افزايش چقرمگي در کامپوزيت ها مي شود .اين پليمر به عنوان تقويت کننده در توليدات کامپوزيتي که نياز به وزن کم (حالت سبکي )و ساختمان پايدار دارد استفاده مي شوند .(مثلاً بخش هايي از بدنه ي يک هواپيما ).مواد کامپوزيتي مورد استفاده ي اصلي را از کولار ندارند .کولار براي جايگزيني به جاي فولاد در لاستيک هاي راديال (radial tyres)و در حال حاضر نيز براي استفاده در جليقه هاي ضد گلوله (bullet proofvests)و کلاه هاي ايمني (helmets)سنتز و توليد شده است .


ساخت بدنه هواپیما با استفاده از مواد کامپوزیتی

منبع:
http://www.www.www.iran-eng.ir/show...-سنتي-هستند؟?p=3558909&viewfull=1#post3558909
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
انتخاب روش توليد (choosing the manufacturing process):

توليد يک شيء از مواد کامپوزيتي معمولاً به وسيله ي ايجاد قالب هايي براي فرم دهي انجام مي شود .مواد تقويت کننده ابتدا در قالب قرار داده مي شوند و سپس ماده ي نيمه مايع زمينه به داخل قالب اسپري يا پمپ مي شود و شکل جسم ايجاد مي شود .فشارمعمولاً براي خارج کردن حبابهاي هواي موجود در نمونه ي کامپوزيتي اعمال مي شود .سپس به قالب گرما داده مي شود تا زمينه جامد گردد .
پروسه ي قالب گيري معمولاً به وسيله ي دست انجام مي شود .ولي امروزه پروسه ي اتوماتيک به وسيله ي دستگاه نيزعموميت يافته است .يکي از روشهاي جديد که اکسترود کششي (pultrusion)[واژه اي که از دو لغت pull به معناي کشيدن (extrusion)با سطح صاف .اين مواد سطح مقطع عرضي ثابتي دارند که در توليد به ما کمک مي کند مانند توليد تيرهاي پل از جنس کامپوزيت .
در بسياري از ساختارهاي نازک با اشکال پيچيده مانند پانل هاي خميده ، ساختار کامپوزيت با چسبانيدن صفحات الياف بافته شده که نقش تقويت کننده را دارند به وجود مي آيد ، سپس به وسيله ي زمينه ي پليمري پر مي شود .البته اين کار در يک قالب پايه انجام مي شود و زماني که پانل درضخامت مورد نظر ساخته شد مواد زمينه خشک و جامد مي گردند .


نمونه ای از کامپزیت با ساختار لانه زنبوری
در بسياري از کامپوزيت هاي پيشرفته (به عنوان مثال آنهاي که در بال و پانل هاي بدنه ي هواپيما کاربرد دارند )ساختار ممکن است شامل يک پلاستيک به حالت لانه زنبوري باشد که درميان دو پوسته ي کامپوزيتي تقويت شده با الياف کربن پيچيده شده باشد .


شکل : الیاف کربنی ( Corbon fibers)
اين کامپوزيت هاي ساندويچي ،استحکام بالا و سختي پيوندي مخصوصي را با وزن کم ايجاد مي کنند .شبيه به هرچيزي که به هواپيما مربوط باشد . اين پانل ها نيز گران قيمت هستند .
*چرا از کامپوزيت ها استفاده مي کنيم ؟ (so why use composites):
بزرگترين حسن مواد کامپوزيتي استحکام و سختي توأمان و سبکي آنهاست . با انتخاب مطلوب مواد تقويت کننده و زمينه ، توليدات مي توانند خواصي داشته باشند که نيازهاي ما را براي يک ساختار خاص و براي يک هدف خاص برآورده کند .هوانوردي مدرن ،هردو بخش نظامي و غيرنظامي مثال اول ماست .اين صنعت بدون کامپوزيت ها کارآمد نيست .
درحقيقت ، نيازها براي توليدات صنعتي تمايل به موادي دارد که درعين سبکي ، محکم نيز باشند .اين امر منجر به توسعه ي کامپوزيت ها گشته است . قطعات بال (wing)، دم (tail)، ملخ ها (propellers)و پره هاي چرخان (rotor blades)عمدتاً از کامپوزيت هاي پيشرفته ساخته مي شوند .
بدنه هاي هواپيماهاي کوچکتر از مواد کامپوزيتي توليد مي شوند .که اکثر بخشهاي آنها از بدنه گرفته تا بال ها و دم از جنس مواد کامپوزيتي است .
در مورد فکرکردن به هواپيماها، اين با ارزش است که بدانيم کامپوزيت ها احتمال شکست کامل کمتري نسبت به فلزاتي مانند آلومينيوم (Al )در شرايط اعمال تنش دارند .
يک ترک ريز در داخل يک قطعه ي فلزي مي تواند به سرعت گسترش يابد و نتايج مخرب زيادي ايجاد کند .(به خصوص در مورد هواپيما )ولي در کامپوزيت ها الياف مانند يک سد در برابر گسترش ترک مقاومت نموده و تنش را بر روي محيط اطراف توزيع مي کنند .
کامپوزيت هاي اصلاح شده همچنين در برابر گرما و خوردگي مقاومت مي کنند .اين مزيت باعث مي شود که از کامپوزيت ها در محصولاتي که با محيط هاي خطرناک مانند قايق ها ، ابزارآلات در تماس با مواد شيمايي (chemical-handling a quipment)و فضاپيما استفاده گردد .به طورعمومي ، کامپوزيت ها موادي مقاوم هستند .مزيت ديگر آنها اين است که توليداتي با انعطاف پذيري توليد مي کنند . کامپوزيت ها مي توانند به شکل دهي پيچيده قالب گيري شوند .
چيزخوبي که درهنگامي که مي خواهيم چيزي مانند يک تخته ي موج سواري يا بدنه ي قايق را بسازيم به ما کمک کند .
عيب کامپوزيت ها معمولاً قيمت بالاي آنهاست .اگرچه پروسه ي توليد اغلب کم خرج است .ولي مواد اوليه ي کامپوزيت ها گران قيمت است . کامپوزيت ها هرگز به طورکامل جانشين مواد سنتي مانند فولاد نمي شوند اما در بسياري از موارد کامپوزيت ها همان چيزي هستند که ما مي خواهيم .


منبع:
http://www.www.www.iran-eng.ir/show...-سنتي-هستند؟?p=3558912&viewfull=1#post3558912
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
بتن پلیمری

|بتن پلیمری
قرن بیستم را به حق باید قرن پلیمر ها نیز دانست ، محصولات پلیمری از لحاظ حجمی در سال 1990 بر حجم محصولات آهنی فایق آمد و پیش بینی می شود که در قرن حاضر ، از لحاظ وزن نیز بالاتر رود . صنایع ساختمان بزرگترین مصرف کننده موادّ پلیمری ، 25 تا 30 درصد از کلّ پلیمر ها را مصرف می کند .
یکی از مواردی که در ساختمان به وفور استفاده می شود بتن است . این مادّه به دلیل هزینه پایین تولید ، راحتی استفاده و استحکام فشاری ، یکی از موادّ پرمصرف در سازه هاست ولی به دلیل نقایصی که دارد ( نقایصی چون : 1 – تخریب یخ زدگی و ذوب 2 – تخریب پذیری توسّط موادّ شیمیایی خورنده 3 – استحکام کششی کم 4- دیرپخت بودن و …. ) همزمان با تولید این مادّه ، ترکیب آن با فولاد ( مسلّح کردن بتن )‌ و ایجاد خاصیّت تاب خمشی مطرح شد و از همان موقع ، استفاده از موادّ و ترکیبات شیمیایی ، برای بهبود خواصّ آن مورد توجّه قرار گرفت . حاصل تحقیقیاتی که در این زمینه صورت گرفت این نتیجه را در بر داشت که جایگزینی مناسبی ، با موادّ پلیمری انجام شده است و با به کارگیری آنها به روش های مختلف ، خواصّ بتن ارتقا می یابد . ( این تحقیقات بیشتر در ژاپن ، آمریکا و روسیه انجام شده است ) . در این رابطه خانواده بتن های پلیمری ، بهترین خاصیّت ها را از خود نشان دادند . خواصّ این نوع بتن ، برتر از بتن های سیمانی بود و گاهی خواصّ
منحصر به فردی از خود نشان می دهد . با توجّه به ‌نیاز بیشتر به استحکام در سازه ها و برتری های این نوع بتن ، بتن پلیمری مورد علاقه دانشمندان واقع شد و با وجود آنکه مدّت زیادی از اختراع آن نمی گذرد و علیرغم قیمت بالایی نیز که داراست مورد استقبال روزافزون قرار گرفته است . بتن های پلیمری از حدود سال 1950 وارد بازار شده اند و پیش بینی می شود در طیّ دهه پیش رو ، مصرفشان 10 برابر شود . کاربرد این نوع پلیمرها به دو شاخه استفاده جامد و استفاده غیر جامد تقسیم می شود .
در حالت جامد محصولات پلیمری به جای فولاد جایگزین می شوند و بتن را مسلّح می کنند که در این حالت ، پلیمر به صورت رشته ، شبکه و یا میلگرد در بتن استفاده می شود . در حالت غیر جامد با تزریق پلیمر های پودری و مایع ، در دوام بتن بهبود حاصل می شود .

انواع بتن های پلیمری بدین قرارند :
1- بتن های باردار شده توسّط پلیمر ( PIC ) : شامل بتن پورتلند پیش ریخته شده است که توسّط یک سیستم مونومری باردار گردیده است (‌ آماده واکنش است )‌ و متعاقباً در محلّ ، پلیمریزه می شود .
2- بتن های پلیمر – سیمان (PCC) : شامل یک مونومر است که به مخلوط آبی بتن تازه افزوده می شود و متعاقباً در محلّ، پلیمریزه می شود .
3- بتن های پلیمری (PC) : شامل یک سیستم مخلوط از سنگریزه ( Aggregate ) و پرکننده ( Filler ) در مونومر می باشد که متعاقباً در محلّ ، پلیمریزه می شود .
4- بتن های پلیمر – گوگرد (PSC ) : شامل یک سیستم مخلوط از بتن های گوگردی است که توسّط پلیمر ها اصلاح خواصّ پیدا کرده باشد .


روشی برای تقویّت بتن های معمولی :‌
در بتن های پلیمری از تکنیک آغشته سازی بتن با پلیمر استفاده می شود . در این روش ، یک سیستم مونومری به داخل بتن سخت شده نفوذ می کند و پس از پلیمریزاسیون موجب انسداد مجاری و حفره های درون بدنه و اتّصال بیشتر اجزاء متشکّله و ارتقای بسیاری از خواصّ بتن خواهد شد . در این روش از مونومر های متیل متا کریلات و استایرن استفاده می شود . روش کار بدین ترتیب است که نمونه های بتن را خشک و تمیز نموده و سپس خنک می کنیم . بعد بتن را با سیستم مونومری
آغشته می کنیم و پس از انجام پلیمریزاسیون کاتالیتی حرارتی ، بتن پلیمری آماده است . این بتن ، مقاومت فشاری و نفوذناپذیری اش افزایش پیدا کرده است .
مزایای بتن های پلیمری :
1 – استحکام 2- کرنش های فشاری ، خمشی ، کششی (‌چندین برابر ) 3 – میرایی 4 – عمر سرویس
5 – مقاومت سایش و ضربه ای 6 – مقاومت در برابر تغییرات جوّی 7- مقاومت در برابر عوامل شیمیایی
8 – مقاومت در برابر عوامل مخرّب محیطی 9- مقاومت در برابر عوامل مخرّب صنعتی 10- جذب آب کمتر
11 – افت کمتر خواص 12 – خواصّ فیزیکی و مکانیکی بهتر 13 - دارای خواصّ تزئینی

داون لود مقاله درباره بتن پلیمری:

http://www.www.www.iran-eng.ir/attachment.php?attachmentid=70516&d=1321192500

اینم یکی دیگه:

http://www.www.www.iran-eng.ir/attachment.php?attachmentid=70518&d=1321192785

منبع:
http://www.www.www.iran-eng.ir/showthread.php/320288
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
کامپوزیت

کامپوزيت ترکيبي است از چند مادة متمايز، به طوري که اجزاي آن به‌آساني قابل تشخيص از يکديگر باشند. يکي از کامپوزيت‌هاي آشنا بتُن است که از دو جزء سيمان و ماسه ساخته مي‌شود.

براي تغيير دادن و بهينه کردن خواص فيزيکي و شيميايي مواد، آنها را کامپوز يا ترکيب مي‌کنيم. به طور مثال، پُلي اتيلن{1} که در ساخت چمن‌هاي مصنوعي از آن استفاده مي‌شود، رنگ‌پذير نيست و بنابراين، رنگ اين چمن‌ها اغلب مات به نظر مي‌رسد. براي رفع اين عيب، به اين پليمر وينيل استات مي‌افزايند تا خواص پلاستيکي، انعطافي‌ و رنگ‌پذيري آن اصلاح شوند. در واقع، هدف از ايجاد کامپوزيت، به دست آوردن ماده‌اي ترکيبي با خواص دلخواه است.

نانوکامپوزيت، همان کامپوزيت در مقياس نانومتر (9-10) است. نانوکامپوزيت‌ها در دو فاز تشکيل مي‌شوند. در فاز اول ساختاري بلوري در ابعاد نانو ساخته مي‌شود که زمينه يا ماتريس کامپوزيت به شمار مي‌رود. اين زمينه ممکن است از جنس پليمر، فلز يا سراميک باشد. در فاز دوم ذراتي در مقياس نانو به عنوان تقويت‌کننده{2} براي استحکام، مقاومت، هدايت الکتريکي و... به فاز اول يا ماتريس افزوده مي‌شود.
بسته به اينکه زمينة نانوکامپوزيت از چه ماده‌اي تشکيل شده باشد، آن را به سه دستة پُليمري، فلزي و سراميکي تقسيم مي‌کنند. کامپوزيت‌هاي پليمري به علت خواصي مانند استحکام، سفتي و پايداري حرارتي و ابعادي، چندين سال است که در ساخت هواپيماها به کار مي‌روند. با رشد نانوتکنولوژي، کامپوزيت‌هاي پليمري بيش از پيش به کار گرفته خواهند شد.

تقويت پليمرها با استفاده از مواد آلي يا معدني بسيار مرسوم است. از نظر ساختاري، ذرات و الياف معمولاً باعث ايجاد استحکام ذاتي مي‌شوند و ماتريس پليمري مي‌تواند با چسبيدن به مواد معدني، نيروهاي اعمال‌شده به کامپوزيت را به نحو يکنواختي به پُرکن يا تقويت‌کننده منتقل کند. در اين حالت، خصوصياتي چون سختي، شفافيت و تخلخلِ مادة درون کامپوزيت تغيير مي‌کند. ماتريس پليمري همچنين مي‌تواند سطحِ پُرکن را از آسيب دور نمايد و ذرات را طوري جدا از هم نگه دارد که رشد تَرَک به تأخير افتد. گذشته از تمام اين خصوصيات فيزيکي، اجزاي مواد نانوکامپوزيتي مي‌توانند بر اثر تعامل بين سطح ماتريس و ذرات پُرکن، ترکيبي از خواصّ هر دو جزء را داشته باشند و بهتر عمل کنند.

کامپوزيت‌هايي که بستر فلزي دارند، کم‌وزن و سبک‌اند و به علت استحکام و سختيِ بالا، کاربردهاي وسيعي در صنايع خودرو و هوا ـ فضا پيدا کرده‌اند. اما اين کاربردها به لحاظ ضعف در قابليت کشيده شدن در چنين کامپوزيت‌هايي، محدود شده‌اند. تبديل کامپوزيت به نانوکامپوزيت سبب افزايش بازده استحکامي و رفع ضعفِ بالا مي‌شود.

نانوکامپوزيت هاي نانوذره‌اي
در اين کامپوزيت‌ها از نانوذراتي همچون (خاک رس، فلزات، و...) به عنوان تقويت‌کننده استفاده مي‌شود. براي مثال، در نانوکامپوزيت‌هاي پليمري، از مقادير کمّيِ (کمتر از 10درصدِ وزني) ذرات نانومتري استفاده مي‌شود. اين ذرات علاوه بر افزايش استحکام پليمرها، وزن آنها را نيز کاهش مي‌دهند. مهمترين کامپوزيت‌هاي نانوذره‌اي، سبک‌ترين آنها هستند.

نانوکامپوزيت‌هاي نانو‌لوله‌اي
نانولوله‌هاي کربني در دو گروه طبقه‌بندي مي‌شوند: نانولوله‌هاي تک‌ديواره و نانولوله‌هاي چندديواره. در اين نوع از کامپوزيت‌ها، اين دو گروه از نانولوله‌ها در بستري کامپوزيتي توزيع مي‌شوند. در صورتي که قيمت نانوله‌ها پايين بيايد و موانع اختلاط آنها رفع شود، کامپوزيت‌هاي نانولوله‌اي موجب رسانايي و استحکام فوق‌العاده‌اي در پليمرها مي‌شوند و کاربردهاي حيرت‌انگيزي همچون آسانسور فضايي براي آن قابل تصور است.
تحقيقات در زمينة توزيع نانولوله‌هاي کربني در پليمرها بسيار جديد هستند. علاقه به نانولوله‌هاي تک‌ديواره‌ و تلاش براي جايگزين کردن آنها در صنعت، به علت خصوصيات عاليِ مکانيکي و رسانايي الکتريکي آنها است. (رسانندگي الکتريکي اين نانولوله¬ها در حد فلزات است.)
اما در دسترس بودن و تجاري بودن نانولوله‌هاي چندديواره، باعث شده است که پيشرفت‌ بيشتري در اين زمينه صورت بگيرد. تا حدي که اکنون مي‌توان از محصولاتي نام برد که در آستانة تجاري شدنِ توليد هستند. براي نمونه، نانولوله‌هاي کربنيِ چندديواره در پودرهاي رنگ به کار رفته‌اند.
استفاده از اين نانولوله‌ها باعث مي‌شود که رسانايي الکتريکي در مقدار کمي از فاز تقويت‌کننده به دست آيد. از نظر نظامي نيز فراهم کردن هدايت الکتريکي فرصت‌هاي انقلابي به وجود خواهد آورد. به عنوان مثال، از پوسته‌هاي الکتريکي ـ مغناطيسي گرفته تا کامپوزيت‌هاي رساناي گرما و لباس‌هاي سربازان آينده‌!

منبع:
http://www.www.www.iran-eng.ir/showthread.php/250444
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
نانوکامپوزيتِ خاک رُس ـ پليمر
نانوکامپوزيت خاک رُس ـ پليمر يک مثال موردي از محصولات نانوتکنولوژي است. در اين نوع ماده، از خاک رُس {3} به عنوان پُرکننده براي بهبود خواص پليمرها استفاده مي‌شود. خاک رُس‌هاي نوع اسمکتيت {4}، ساختار لايه‌لايه دارند و هر لايه تقريباً يک نانومتر ضخامت دارد. صدها يا هزاران عدد از اين لايه‌ها به وسيلة يک نيروي واندروالسيِ ضعيف روي هم انباشته مي‌شوند تا يک جزء رُسي را تشکيل دهند. با يک پيکربندي مناسب، اين امکان وجود دارد که رُس‌ها را به اَشکال و ساختارهاي گوناگون، درون يک پليمر به شکل سازمان‌يافته قرار دهيم.
معلوم شده است که بسياري از خواص مهندسي، هنگامي که در ترکيب ما از ميزان کمي ــ معمولا ً چيزي کمتر از 5 درصد وزني ــ پُرکننده استفاده شود، بهبود قابل توجهي مي‌يابد.
امتياز ديگر نانوکامپوزيت‌هاي خاک رُس ـ پليمر اين است که تأثير قابل توجهي بر خواص اُپتيکي (نوري) پليمر ندارند. ضخامت يک لاية رُس منفرد، بسيار کمتر از طول موج نور مرئي است. بنابراين، نانوکامپوزيتي که خوب ورقه شده باشد، از نظر اُپتيکي شفاف است. از طرفي، با توجه به اينکه امروزه حجم وسيعي از کالاهاي مصرفي جامعه را پليمرهايي تشکيل مي‌دهند که به‌راحتي مي‌سوزند يا گاهي در مقابل شعله فاجعه مي‌آفرينند، لزوم تحقيق در خصوص مواد ديرسوز احساس مي‌شود. نتايج تحقيقات حاکي از آن است که ميزان آتش‌گيري در اين نانوکامپوزيت‌هاي پليمري حدود 70 درصد نسبت به پليمر خالص کمتر است. در عين حال، اغلب خواص کاربردي پليمر نيز تقويت مي‌شوند.
اولين کاربرد تجاري نانوکامپوزيت‌هاي خاک رُس ـ نايلون 6، به عنوان روکش نوار زمان‌سنج براي ماشين‌هاي تويوتا، در سال 1991 بود. در حال حاضر نيز از اين نانوکامپوزيت در صنعت لاستيک استفاده مي‌شود. با افزودن ذرات نانومتريِ خاک رُس به لاستيک، خواص آن به طور قابل ملاحظه‌اي بهبود پيدا مي‌کند که از جمله مي‌توان در آنها به موارد زير اشاره کرد:

1. افزايش مقاومت لاستيک در برابر سايش
2. افزايش استحکام مکانيکي
3. افزايش مقاومت گرمايي
4. کاهش قابليت اشتعال
5. کاهش وزن لاستيک

نانوکامپوزيت الماس ـ نانولوله
محققان توانسته‌اند سخت‌ترين مادة شناخته‌شده در جهان (الماس) را با نانولوله‌هاي کربني ترکيب کنند و کامپوزيتي با خصوصيات جديد به دست آورند. اگرچه الماس سختيِ زيادي دارد، ولي به طور عادي هادي جريان الکتريسيته نيست. از طرفي، نانولوله‌هاي کربن به شکلي باورنکردني سخت و نيز رساناي جريان الکتريسيته‌اند. با يکپارچه کردن اين دو فُرمِ کربن با يکديگر در مقياس نانومتر، کامپوزيتي با خصوصيات ويژه به دست خواهد آمد.
اين کامپوزيت مي‌تواند در نمايشگرهاي مسطح کاربرد داشته باشد. الماس مي‌تواند نانولوله‌هاي کربني را در مقابلِ ازهم‌گسيختگي حفظ کند. در حالي که به طور طبيعي، وقتي نمايشگر را فقط از نانولوله‌هاي کربني بسازند، ممکن است از هم گسيخته شوند.
اين کامپوزيت همچنين در رديابي‌هاي زيستي کاربرد دارد. نانولوله‌ها به مولکول‌هاي زيستي مي‌چسبند و به عنوان حسگر عمل مي‌کنند. الماس نيز به عنوان يک الکترود فوق‌العاده حساس رفتار مي‌کند.
تنها چيزي که در اين تحقيقات واضح نيست اين است که الماس و نانولوله‌هاي کربني چگونه محکم به هم مي‌چسبند؟

جديدترين خودرو نانوکامپوزيتي
اين خودرو توسط شرکت جنرال‌موتورز طراحي شده و به علت استفاده از مواد نانوکامپوزيتي در قسمت‌هاي مختلف آن، حدود 8 درصد سبک‌تر از نمونه‌هاي مشابه قبلي است و علاوه بر سبک بودن، در برابر تغييرات دمايي هم مقاومت مي‌کند.

توپ تنيس نانوکامپوزيتي
شرکت ورزشي ويلسون، يک توپ تنيس دولايه به بازار عرضه کرده که عمر مفيد آن حدود چهار هفته است ــ در حالي که توپ‌هاي معمولي عمر مفيدشان در حدود دو هفته است ــ ولي از نظر خاصيت ارتجاعي و وزن تفاوتي بين اين دو مشاهده نمي‌شود. علت مهم و اصلي دوام توپ‌هاي نانوکامپوزيتي، وجود يک لاية پوشش نانوکامپوزيتي به ضخامت 20 ميکرون به عنوان پوستة داخلي است که باعث مي‌شود هواي محبوس در داخل توپ ضمن ضربه خوردن خارج نگردد، درحالي‌که توپ‌هاي معمولي از جنس لاستيک و در برابر هوا نفوذپذيرند.

الياف نانو، تحولي در صنعت نساجي
امروزه ساخت کامپوزيت‌هاي تقويت‌شده به وسيلة نانوالياف پيشرفت چشمگيري کرده است. ليفچه‌هاي کربنيِ جامد و توخالي با چند ميکرون طول و دو تا بيش از صد نانومتر قطر خارجي خلق شده‌اند که مصارفي در مواد کامپوزيت و روکش دارند.
يکي از دانشجويان کارشناسي ارشد دانشکدة مهندسي نساجي دانشگاه اميرکبير، دستگاه توليد نانوالياف از محلول پليمري را طراحي کرده و ساخته است. اين دستگاه در *****اسيون مايعات، گازها و مولکول‌ها، امور پزشکي مانند مواد آزادکنندة دارو در بدن، پوشش زخم، ترميم پوست، نانوکامپوزيت‌ها ، نانوحسگرها، لباس‌هاي محافظ نظامي و... کاربرد دارد.

مهمترين تأثير نانوکامپوزيت‌ها در آينده کاهش وزن محصولات خواهد بود. ابتدا کامپوزيت‌هاي سبک‌وزن و بعد تجهيزات الکترونيکي کوچکتر و سبکتر در ماهواره‌هاي فضايي.
سازمان فضايي آمريکا (ناسا) در حمايت از فناوري نانو بسيار فعال است. بزرگترين تأثير فناوري نانو در فضاپيماها، هواپيماهاي تجاري و حتي فناوري موشک، کاهش وزن مواد ساختمانيِ سازه‌هاي بزرگ دروني و بيروني، جدارة سيستم‌هاي دروني، اجزاي موتور راکت‌ها يا صفحات خورشيدي خواهد بود.



در مصارف نظامي نيز کامپوزيت‌ها موجب ارتقا در نحوة حفاظت از قطعات الکترونيکي حساس در برابر تشعشع و خصوصيات ديگر همچون ناپيدايي در رادار مي‌شوند.
کامپوزيت‌هاي نانوذرة سيليکاتي به بازار خودروها وارد شده‌اند. در سال 2001 هم جنرال موتورز و هم تويوتا شروع به توليد محصول با اين مواد را اعلام کردند. فايدة آنها افزايش استحکام و کاهش وزن است که مورد آخر صرفه‌جويي در سوخت را به همراه دارد.
علاوه بر اين، نانوکامپوزيت‌ها به محصولاتي همچون بسته‌بندي غذاها راه يافته‌اند تا سدي بزرگتر در برابر نفوذ گازها باشند (مثلاً با حفظ نيتروژن درونِ بسته يا مقابله با اکسيژن بيروني).
همچنين خواصّ تعويق آتش‌گيريِ کامپوزيت‌هاي سيليکات نانوذره‌اي، مي‌تواند در رختِ خواب‌، پرده‌ها و غيره کاربردهاي بسياري پيدا کند.

1- Poly Ethylen
2- Filler
3- Clay
4- Smectite type

منابع:
www.irannano.org
www.autnano.org
www.azonano.com

منبع:
http://www.www.www.iran-eng.ir/showthread.php/250444
 

جینگیلبرت

کاربر حرفه ای
کاربر ممتاز
کامپوزیتها -مواد چند سازه ای یا کاهگل های عصر جدید.
کامپوزیتها (مواد چند سازه ای یا کاهگل های عصر جدید )رده ای از مواد پیشرفته هستند که در آنها از ترکیب موادساده به منظور ایجاد موادی جدید با خواص مکانیکی و فیزیکی برتر استفاده شده است.اجزای تشکیل دهنده ویژگی خود را حفظ کرده در یکدیگر حل نشده و با هم ممزوج نمی شوند.استفاده از این مواد در طول تاریخ نیز مرسوم بوده است مانند آجرهای گلی که در ساخت آنها از تقویت کننده کاه استفاده می شده است .هنگامی که این دو باهم مخلوط بشوند در نهایت آجرپخته بدست می آید که بسیار ماندگار تر و مقاوم تر از هر دو ماده اولیه یعنی گل و کاه است.
تقسیم بندی مواد کامپوزیت:
1)کامپوزیتهای زمینه سرامیکی. ( CMC )
2)کامپوزیتهای زمینه فلزی. ( MMC)
1)کامپوزیتهای زمینه پلیمری. ( CMC )
رایجترین دسته کامپوزیت های زمینه پلیمری هستند که بیش از 90 درصد مصرف جهانی کامپوزیت را به خود اختصاص داده اند.
فایبرگلاس‌ها یا الیاف شیشه متداولترین الیاف مصرفی کامپوزیت‌ها در دنیا و ایران است . انواع الیاف شیشه عبارتند از انواع E ، C ، S و کوارتز. ترکیب الیاف شیشه نوع E یا الکتریکی ، از جنس آلومینوبور و سیلیکات کلسیم بوده و دارای مقاومت ویژه الکتریکی بالایی است.الیاف شیشه نوع S ، تقریباْْ 40 درصد استحکام بیشتری نسبت به الیاف شیشه نوع E دارند. الیاف شیشه نوع C یا الیاف شیشه شیمیایی ، دارای ترکیب بور و سیلیکات کربنات دو سود بوده و نسبت به دو مورد قبل پایداری شیمیایی بیشتری بخصوص در محیط‌های اسیدی دارد. الیاف شیشه کوارتز ، بیشتر در مواردی که خاصیت دی‌الکتریک پایین نیاز باشد، مانند پوشش آنتن‌ها و یا رادارهای هواپیما استفاده می‌شوند.
نقاط قوت کامپوزیتها:
وزن کم این مواد در عین بالا بودن نسبت مقاومت به وزن آنها (حتی تا 15 برابر برخی از فولادها )
مقاومت بالا نسبت به خوردگی.
وجود روش های مختلف ساخت و امکان تولید اشکال پیچیده و متنوع.
موارد کاربرد کامپوزیت:
1)صنعت هوا-فضا:ساخت بدنه هواپیما .ساخت پره های توربین بادی و پره های هلی کوپتر.پوشش رادار هواپیما.
2)صنعت نفت وگاز:به منظور ترمیم و تقویت سازه های فرسوده و ترمیم لوله های فرسوده نفت و گاز -.عایق توربین.(کامپوزیت ها با توجه به ساختار شبکه ای و طولی ای که دارند گرما را فقط در جهت طولی منتقل می کنند و نه عرضی بنابر این به عنوان عایق گرما برای دیواره توربین ها مناسب می باشند.-نقل قول از دکتر مظاهری رئیس گروه آیرودینامیک وپیشرانش دانشکده هوا-فضای شریف.)
3)صنایع دریایی:ساخت بدنه کشتی و تاسیسات فرا ساحلی.
4)صنعت ساختمان:پوشش کف -نما-سقف و برج های خنک کننده.
5)صنعت خودرو سازی:ساخت خودره ای سبک و در نتیجه کم مصرف تر.
آشنایی پروژه هایی در مورد کامپوزیت که در ایران در حال انجام است:
1) گروه کامپوزیت و چسب -پژوهشگاه پلیمر وپتروشیمی ایران:
http://www.iranpolymerinstitute.org/.../pjh.asp?ID=40
2)ساخت هواپیمای 4 نفره تمام کامپوزیت فجر 3 در شرکت هواپیمایی فجر.
3)مقاوم سازی پالایشگاه نفت آبادان، پل تقاطع اتوبان شهید همت و اتوبان شیخ فضل الله نوری و نیز دو پل راه آهن در استان یزد.
4) مقاوم سازی سطح خارجی بتون با استفاده از مواد کامپوزیتی :این طرح توسط موسسه کامپوزیت ایران به عنوان اختراع به ثبت رسیده است.
به گفته دکتر مهرداد شکریه رئیس موسسه کامپوزیت ایران : در این روش لایه‌هایی از الیاف شیشه یا کربن به ضخامت 3/0 میلیمتر با استفاده از یک رزین مثل اپوکسی روی سازه بتونی کشیده می‌شود و به این ترتیب میزان مقاومت بتون 3 برابر خواهد شد.
مصرف سرانه مواد کامپوزیتی در کشور :
مصرف سرانه مواد کامپوزیتی در کشور یک دهم سرانه مصرف در کشورهای پیشرفته است و سالانه بیش از 6 میلیون تن مواد کامپوزیتی به ارزش 145 میلیارد دلار در صنایع مختلف جهان مصرف می‌شود. دکتر مهرداد شکریه، رئیس موسسه کامپوزیت ایران با اعلام این مطلب افزود: سرانه مصرف کامپوزیت در کشورهای پیشرفته جهان 3 کیلوگرم است در حالی که این سرانه در کشور ما تنها 3/0 کیلوگرم است.به گفته عضو هیات علمی دانشگاه علم و صنعت ایران ایران از نظر سرانه مصرف مواد کامپوزیتی، همرده کشورهای آسیایی قرار دارد. وی با اشاره به این که علت پایین بودن سرانه مصرف مواد کامپوزیتی در این قاره وسعت این قاره و نیز وجود کشورهای فقیر در این منطقه است، در عین حال از کشور ژاپن با سرانه 5/4 کیلوگرم در سال به عنوان نمونه‌ای از یک کشور آسیایی پیشرفته با مصرف سرانه مواد کامپوزیتی بالا نام برد.

منبع:
http://www.www.www.iran-eng.ir/showthread.php/250444
 
بالا