دانشگاه آزاد شهرضا

kharkhon

عضو جدید
Boyle's law (1662)
Boyle's Law was perhaps the first expression of an equation of state. In 1662, the noted Irish physicist and chemist Robert Boyle performed a series of experiments employing a J-shaped glass tube, which was sealed on one end. Mercury was added to the tube, trapping a fixed quantity of air in the short, sealed end of the tube. Then the volume of gas was carefully measured as additional mercury was added to the tube. The pressure of the gas could be determined by the difference between the mercury level in the short end of the tube and that in the long, open end. Through these experiments, Boyle noted that the gas volume varied inversely with the pressure. In mathematical form, this can be stated as:

The above relationship has also been attributed to Edme Mariotte and is sometimes referred to as Mariotte's law. However, Mariotte's work was not published until 1676.
[edit]Charles's law or Law of Charles and Gay-Lussac (1787)
In 1787 the French physicist Jacques Charles found that oxygen, nitrogen, hydrogen, carbon dioxide, and air expand to the same extent over the same 80 kelvin interval. Later, in 1802, Joseph Louis Gay-Lussac published results of similar experiments, indicating a linear relationship between volume and temperature:

[edit]Dalton's law of partial pressures (1801)
Dalton's Law of partial pressure states that the pressure of a mixture of gases is equal to the sum of the pressures of all of the constituent gases alone.
Mathematically, this can be represented for n species as:


[edit]The ideal gas law (1834)
In 1834 Émile Clapeyron combined Boyle's Law and Charles' law into the first statement of the ideal gas law. Initially the law was formulated as pVm=R(TC+267) (with temperature expressed in degrees Celsius), where R is the gas constant. However, later work revealed that the number should actually be closer to 273.2, and then the Celsius scale was defined with 0 °C = 273.15 K, giving:

[edit]Van der Waals equation of state
In 1873, J. D. van der Waals introduced the first equation of state derived by the assumption of a finite volume occupied by the constituent molecules.[2] His new formula revolutionized the study of equations of state, and was most famously continued via the Redlich–Kwong equation of state and the Soave modification of Redlich-Kwong.
[edit]Major equations of state

For a given amount of substance contained in a system, the temperature, volume, and pressure are not independent quantities; they are connected by a relationship of the general form:

In the following equations the variables are defined as follows. Any consistent set of units may be used, although SI units are preferred. Absolute temperature refers to use of the Kelvin (K) or Rankine (°R) temperature scales, with zero being absolute zero.
= pressure (absolute)
= volume
= number of moles of a substance
= = molar volume, the volume of 1 mole of gas or liquid
= absolute temperature
= ideal gas constant (8.314472 J/(mol·K))
= pressure at the critical point
= molar volume at the critical point
= absolute temperature at the critical point
[edit]Classical ideal gas law
The classical ideal gas law may be written:

The ideal gas law may also be expressed as follows

where ρ is the density, γ = Cp / Cv is the adiabatic index (ratio of specific heats), e = CvT is the internal energy per unit mass (the "specific internal energy"), Cv is the specific heat at constant volume, and Cp is the specific heat at constant pressure.
[edit]Cubic equations of state

[edit]Van der Waals equation of state
The Van der Waals equation of state may be written:

where Vm is molar volume, and a and b are substance-specific constants. They can be calculated from the critical properties pc,Tc and Vc (noting that Vc is a the molar volume at the critical point) as:


Also written as


Proposed in 1873, the van der Waals equation of state was one of the first to perform markedly better than the ideal gas law. In this landmark equation a is called the attraction parameter and b the repulsion parameter or the effective molecular volume. While the equation is definitely superior to the ideal gas law and does predict the formation of a liquid phase, the agreement with experimental data is limited for conditions where the liquid forms. While the van der Waals equation is commonly referenced in text-books and papers for historical reasons, it is now obsolete. Other modern equations of only slightly greater complexity are much more accurate.
The van der Waals equation may be considered as the ideal gas law, “improved” due to two independent reasons:
Molecules are thought as particles with volume, not material points. Thus V cannot be too little, less than some constant. So we get (V − b) instead of V.
While ideal gas molecules do not interact, we consider molecules attracting others within a distance of several molecules' radii. It makes no effect inside the material, but surface molecules are attracted into the material from the surface. We see this as diminishing of pressure on the outer shell (which is used in the ideal gas law), so we write (p + something) instead of p. To evaluate this ‘something’, let's examine an additional force acting on an element of gas surface. While the force acting on each surface molecule is ~ρ, the force acting on the whole element is ~ρ2~.
[edit]Redlich–Kwong equation of state



Introduced in 1949 the Redlich–Kwong equation of state was a considerable improvement over other equations of the time. It is still of interest primarily due to its relatively simple form. While superior to the van der Waals equation of state, it performs poorly with respect to the liquid phase and thus cannot be used for accurately calculating vapor-liquid equilibria. However, it can be used in conjunction with separate liquid-phase correlations for this purpose.
The Redlich–Kwong equation is adequate for calculation of gas phase properties when the ratio of the pressure to the critical pressure (reduced pressure) is less than about one-half of the ratio of the temperature to the critical temperature (reduced temperature):

[edit]Soave modification of Redlich-Kwong





Where ω is the acentric factor for the species.
for hydrogen:

In 1972 Soave replaced the 1/√(T) term of the Redlich-Kwong equation with a function α(T,ω) involving the temperature and the acentric factor. The α function was devised to fit the vapor pressure data of hydrocarbons and the equation does fairly well for these materials.
Note especially that this replacement changes the definition of a slightly, as the Tc is now to the second power.
[edit]Peng-Robinson equation of state





In polynomial form:



where, ω is the acentric factor of the species, R is the universal gas constant and Z=PV/(RT) is compressibility factor.
The Peng-Robinson equation was developed in 1976 in order to satisfy the following goals:[3]
The parameters should be expressible in terms of the critical properties and the acentric factor.
The model should provide reasonable accuracy near the critical point, particularly for calculations of the compressibility factor and liquid density.
The mixing rules should not employ more than a single binary interaction parameter, which should be independent of temperature pressure and composition.
The equation should be applicable to all calculations of all fluid properties in natural gas processes.
For the most part the Peng-Robinson equation exhibits performance similar to the Soave equation, although it is generally superior in predicting the liquid densities of many materials, especially nonpolar ones. The departure functions of the Peng-Robinson equation are given on a separate article.

Elliott, Suresh, Donohue equation of state
The Elliott, Suresh, and Donohue (ESD) equation of state was proposed in 1990.[4] The equation seeks to correct a shortcoming in the Peng-Robinson EOS in that there was an inaccuracy in the van der Waals repulsive term. The EOS accounts for the effect of the shape of a non-polar molecule and can be extended to polymers with the addition of an extra term (not shown). The EOS itself was developed through modeling computer simulations and should capture the essential physics of the size, shape, and hydrogen bonding.

where:


and
c is a "shape factor", with c = 1 for spherical molecules
For non-spherical molecules, the following relation is suggested:
c = 1 + 3.535ω + 0.533ω2 where ω is the acentric factor
The reduced number density η is defined as
where
v * is the characteristic size parameter
n is the number of molecules
V is the volume of the container
The characteristic size parameter is related to the shape parameter c through

where
and k is Boltzmann's constant.
Noting the relationships between Boltzmann's constant and the Universal gas constant, and observing that the number of molecules can be expressed in terms of Avogadro's number and the molar mass, the reduced number density η can be expressed in terms of the molar volume as

The shape parameter q appearing in the Attraction term and the term Y are given by
q = 1 + k3(c − 1) (and is hence also equal to 1 for spherical molecules).

where ε is the depth of the square-well potential and is given by

zm , k1 , k2 and k3 are constants in the equation of state:
zm = 9.49 for spherical molecules (c=1)
k1 = 1.7745 for spherical molecules (c=1)
k2 = 1.0617 for spherical molecules (c=1)
k3 = 1.90476.
The model can be extended to associating components and mixtures of nonassociating components. Details are in the paper by J.R. Elliott Jr., S.J. Suresh and M.D. Donohue cited above.
[edit]Non-cubic equations of state

[edit]Dieterici equation of state

where a is associated with the interaction between molecules and b takes into account the finite size of the molecules, similarly to the Van der Waals equation.
The reduced coordinates are:

[edit]Virial equations of state

[edit]Virial equation of state



Although usually not the most convenient equation of state, the virial equation is important because it can be derived directly from statistical mechanics. If appropriate assumptions are made about the mathematical form of intermolecular forces, theoretical expressions can be developed for each of the coefficients. In this case B corresponds to interactions between pairs of molecules, C to triplets, and so on. Accuracy can be increased indefinitely by considering higher order terms.
It can also be used to work out the Boyle Temperature (the temperature at which B = 0 and ideal gas laws apply) from a and b from the Van der Waals equation of state. If you use the value for B shown below;

[edit]The BWRS equation of state
Main article: Benedict-Webb-Rubin

where
p = pressure
ρ = the molar density
Values of the various parameters for 15 substances can be found in:
K.E. Starling, Fluid Properties for Light Petroleum Systems. Gulf Publishing Company (1973).
[edit]Other equations of state of interest

[edit]Stiffened equation of state
When considering water under very high pressures (typical applications are underwater nuclear explosions, sonic shock lithotripsy, and sonoluminescence) the stiffened equation of state is often used:

where e is the internal energy per unit mass, γ is an empirically determined constant typically taken to be about 6.1, and p0 is another constant, representing the molecular attraction between water molecules. The magnitude of the correction is about 2 gigapascals (20000 atmospheres).
The equation is stated in this form because the speed of sound in water is given by c2 = γ(p + p0) / ρ.
Thus water behaves as though it is an ideal gas that is already under about 20000 atmospheres (2 GPa) pressure, and explains why water is commonly assumed to be incompressible: when the external pressure changes from 1 atmosphere to 2 atmospheres (100 kPa to 200 kPa), the water behaves as an ideal gas would when changing from 20001 to 20002 atmospheres (2000.1 MPa to 2000.2 MPa).
This equation mispredicts the specific heat capacity of water but few simple alternatives are available for severely nonisentropic processes such as strong shocks.
[edit]Ultrarelativistic equation of state
An ultrarelativistic fluid has equation of state

where p is the pressure, ρm is the mass density, and cs is the speed of sound.
[edit]Ideal Bose equation of state
The equation of state for an ideal Bose gas is

where α is an exponent specific to the system (e.g. in the absence of a potential field, α=3/2), z is exp(μ/kT) where μ is the chemical potential, Li is the polylogarithm, ζ is the Riemann zeta function, and Tc is the critical temperature at which a Bose-Einstein condensate begins to form.
[edit]Equations of state for solids

Johnson Holmquist Equation of State
[edit]See also

Gas laws
Departure function
Table of thermodynamic equations
Real gas
Cluster Expansion
[edit]References


This article includes a list of references or external links, but its sources remain unclear because it has insufficient inline citations. Please help to improve this article by introducing more precise citations where appropriate. (May 2009)
^ Perrot, Pierre (1998). A to Z of Thermodynamics. Oxford University Press. ISBN 0-19-856552-6.
^ van der Waals, J. D. (1873). On the Continuity of the Gaseous and Liquid States (doctoral dissertation). Universiteit Leiden.
^ Peng, DY, and Robinson, DB (1976). "A New Two-Constant Equation of State". Industrial and Engineering Chemistry: Fundamentals 15: 59–64. doi:10.1021/i160057a011.
^ J. Richard Jr. Elliott, S. Jayaraman Suresh, Marc D. Donohue (1990). "A Simple Equation of State for Nonspherical and Associating Molecules". Ind. Eng. Chem. Res. 29: 1476–1485. doi:10.1021/ie00103a057.
[edit]Bibliography
 

kharkhon

عضو جدید
Elliott, Suresh, Donohue equation of state
The Elliott, Suresh, and Donohue (ESD) equation of state was proposed in 1990.[4] The equation seeks to correct a shortcoming in the Peng-Robinson EOS in that there was an inaccuracy in the van der Waals repulsive term. The EOS accounts for the effect of the shape of a non-polar molecule and can be extended to polymers with the addition of an extra term (not shown). The EOS itself was developed through modeling computer simulations and should capture the essential physics of the size, shape, and hydrogen bonding.

where:


and
c is a "shape factor", with c = 1 for spherical molecules
For non-spherical molecules, the following relation is suggested:
c = 1 + 3.535ω + 0.533ω2 where ω is the acentric factor
The reduced number density η is defined as
where
v * is the characteristic size parameter
n is the number of molecules
V is the volume of the container
The characteristic size parameter is related to the shape parameter c through

where
and k is Boltzmann's constant.
Noting the relationships between Boltzmann's constant and the Universal gas constant, and observing that the number of molecules can be expressed in terms of Avogadro's number and the molar mass, the reduced number density η can be expressed in terms of the molar volume as

The shape parameter q appearing in the Attraction term and the term Y are given by
q = 1 + k3(c − 1) (and is hence also equal to 1 for spherical molecules).

where ε is the depth of the square-well potential and is given by

zm , k1 , k2 and k3 are constants in the equation of state:
zm = 9.49 for spherical molecules (c=1)
k1 = 1.7745 for spherical molecules (c=1)
k2 = 1.0617 for spherical molecules (c=1)
k3 = 1.90476.
The model can be extended to associating components and mixtures of nonassociating components. Details are in the paper by J.R. Elliott Jr., S.J. Suresh and M.D. Donohue cited above.
[edit]Non-cubic equations of state

[edit]Dieterici equation of state

where a is associated with the interaction between molecules and b takes into account the finite size of the molecules, similarly to the Van der Waals equation.
The reduced coordinates are:

[edit]Virial equations of state

[edit]Virial equation of state



Although usually not the most convenient equation of state, the virial equation is important because it can be derived directly from statistical mechanics. If appropriate assumptions are made about the mathematical form of intermolecular forces, theoretical expressions can be developed for each of the coefficients. In this case B corresponds to interactions between pairs of molecules, C to triplets, and so on. Accuracy can be increased indefinitely by considering higher order terms.
It can also be used to work out the Boyle Temperature (the temperature at which B = 0 and ideal gas laws apply) from a and b from the Van der Waals equation of state. If you use the value for B shown below;

[edit]The BWRS equation of state
Main article: Benedict-Webb-Rubin

where
p = pressure
ρ = the molar density
Values of the various parameters for 15 substances can be found in:
K.E. Starling, Fluid Properties for Light Petroleum Systems. Gulf Publishing Company (1973).
[edit]Other equations of state of interest

[edit]Stiffened equation of state
When considering water under very high pressures (typical applications are underwater nuclear explosions, sonic shock lithotripsy, and sonoluminescence) the stiffened equation of state is often used:

where e is the internal energy per unit mass, γ is an empirically determined constant typically taken to be about 6.1, and p0 is another constant, representing the molecular attraction between water molecules. The magnitude of the correction is about 2 gigapascals (20000 atmospheres).
The equation is stated in this form because the speed of sound in water is given by c2 = γ(p + p0) / ρ.
Thus water behaves as though it is an ideal gas that is already under about 20000 atmospheres (2 GPa) pressure, and explains why water is commonly assumed to be incompressible: when the external pressure changes from 1 atmosphere to 2 atmospheres (100 kPa to 200 kPa), the water behaves as an ideal gas would when changing from 20001 to 20002 atmospheres (2000.1 MPa to 2000.2 MPa).
This equation mispredicts the specific heat capacity of water but few simple alternatives are available for severely nonisentropic processes such as strong shocks.
[edit]Ultrarelativistic equation of state
An ultrarelativistic fluid has equation of state

where p is the pressure, ρm is the mass density, and cs is the speed of sound.
[edit]Ideal Bose equation of state
The equation of state for an ideal Bose gas is

where α is an exponent specific to the system (e.g. in the absence of a potential field, α=3/2), z is exp(μ/kT) where μ is the chemical potential, Li is the polylogarithm, ζ is the Riemann zeta function, and Tc is the critical temperature at which a Bose-Einstein condensate begins to form.
[edit]Equations of state for solids

Johnson Holmquist Equation of State
[edit]See also

Gas laws
Departure function
Table of thermodynamic equations
Real gas
Cluster Expansion
[edit]References


This article includes a list of references or external links, but its sources remain unclear because it has insufficient inline citations. Please help to improve this article by introducing more precise citations where appropriate. (May 2009)
^ Perrot, Pierre (1998). A to Z of Thermodynamics. Oxford University Press. ISBN 0-19-856552-6.
^ van der Waals, J. D. (1873). On the Continuity of the Gaseous and Liquid States (doctoral dissertation). Universiteit Leiden.
^ Peng, DY, and Robinson, DB (1976). "A New Two-Constant Equation of State". Industrial and Engineering Chemistry: Fundamentals 15: 59–64. doi:10.1021/i160057a011.
^ J. Richard Jr. Elliott, S. Jayaraman Suresh, Marc D. Donohue (1990). "A Simple Equation of State for Nonspherical and Associating Molecules". Ind. Eng. Chem. Res. 29: 1476–1485. doi:10.1021/ie00103a057.
[edit]Bibliography

Thermodynamic Properties
From a thermodynamics viewpoint (see, for instance Sears [SEA75], the equation of state of a substance is
a relationship between any four thermodynamic properties of the substance, three of which are independent.
An example of the equation of state involves pressure P, volume V, temperature T and mass of system:
If any three of the four properties are fixed, the fourth is determined.
The equation of state can also be written in a form which depends only on the nature of the system and not
on how much of the substance is present, hence all extensive properties are replaced by their corresponding
specific values. Thus
is the specific value form of the above equation of state, where ν is the specific volume. If any two of the
thermodynamic properties are fixed, the third is determined.
From a thermodynamic point of view, the appropriate way to present water properties is by tables or formula
for each property expressed as a function of the independent parameters P and T, as per Meyer [MEY67 or
Haar [HAR84] (figure 4.1). Thus given values of pressure and temperature, the calculation of other
thermodynamic properties is usually straightforward. On the other hand, the determination of pressure from
known values of other thermodynamic properties is not direct since interpolation and iteration is required.
Unfortunately, T and P are rarely the independent parameters in system dynamics since the numerical solution
of the conservation equations yield mass and energy as a function of time. Hence, from the point of view of
the equation of state, it is mass and energy which are the independent parameters. Consequently, system
codes are hampered by the form of water property data commonly available.
A key point to note is that the conservation equations are all cast as rate equations whereas the equation of
state is typically written as an algebraic equation. This arises from the basic assumption that, although the
properties of mass, momentum and energy must be traced or solved as a function of time and space, the
 

kharkhon

عضو جدید
Thermodynamic Properties
From a thermodynamics viewpoint (see, for instance Sears [SEA75], the equation of state of a substance is
a relationship between any four thermodynamic properties of the substance, three of which are independent.
An example of the equation of state involves pressure P, volume V, temperature T and mass of system:
If any three of the four properties are fixed, the fourth is determined.
The equation of state can also be written in a form which depends only on the nature of the system and not
on how much of the substance is present, hence all extensive properties are replaced by their corresponding
specific values. Thus
is the specific value form of the above equation of state, where ν is the specific volume. If any two of the
thermodynamic properties are fixed, the third is determined.
From a thermodynamic point of view, the appropriate way to present water properties is by tables or formula
for each property expressed as a function of the independent parameters P and T, as per Meyer [MEY67 or
Haar [HAR84] (figure 4.1). Thus given values of pressure and temperature, the calculation of other
thermodynamic properties is usually straightforward. On the other hand, the determination of pressure from
known values of other thermodynamic properties is not direct since interpolation and iteration is required.
Unfortunately, T and P are rarely the independent parameters in system dynamics since the numerical solution
of the conservation equations yield mass and energy as a function of time. Hence, from the point of view of
the equation of state, it is mass and energy which are the independent parameters. Consequently, system
codes are hampered by the form of water property data commonly available.
A key point to note is that the conservation equations are all cast as rate equations whereas the equation of
state is typically written as an algebraic equation. This arises from the basic assumption that, although the
properties of mass, momentum and energy must be traced or solved as a function of time and space, the
The Iterative Method
Given the density and enthalpy of a volume of water, the task at hand is to find the associated values of
pressure and temperature. Figure 4.2 shows qualitatively the relation between density, ρ, and enthalpy, h,
for a given P. At low enthalpy, the fluid is single phase liquid and the density is high. As heat is added and
the fluid reaches saturation temperature, vapour is generated to form a two-phase mixture and the density
approaches the vapour density. The curve is well behaved and continuous making it a suitable candidate for
numerical search routines.
We start the iteration procedure by guessing a pressure. Usually in system transient simulation codes, the
value of P at a previous time step is a good choice. Given P we calculate hfsat and hgsat, the saturation
enthalpies for the liquid and vapour phases, respectively. If h < hfsat then the fluid is single phase liquid. If
h > hgsat then the fluid is single phase vapour. Otherwise the fluid is a two-phase mixture with a quality, x
0 [0,1].
The case of two-phase equilibrium is considered first. Subsequently, the equations are extended to cover
single phase and two-phase non-equilibrium fluid.
4.3.1 Two-Phase Equilibrium Fluid
For two-phase fluid, the density and enthalpy are functions of the pressure and quality. Since we know the
density, ρ, we can estimate the quality (xest) for the guessed P (assuming a homogeneous mixture) since:
 

kharkhon

عضو جدید
The Iterative Method
Given the density and enthalpy of a volume of water, the task at hand is to find the associated values of
pressure and temperature. Figure 4.2 shows qualitatively the relation between density, ρ, and enthalpy, h,
for a given P. At low enthalpy, the fluid is single phase liquid and the density is high. As heat is added and
the fluid reaches saturation temperature, vapour is generated to form a two-phase mixture and the density
approaches the vapour density. The curve is well behaved and continuous making it a suitable candidate for
numerical search routines.
We start the iteration procedure by guessing a pressure. Usually in system transient simulation codes, the
value of P at a previous time step is a good choice. Given P we calculate hfsat and hgsat, the saturation
enthalpies for the liquid and vapour phases, respectively. If h < hfsat then the fluid is single phase liquid. If
h > hgsat then the fluid is single phase vapour. Otherwise the fluid is a two-phase mixture with a quality, x
0 [0,1].
The case of two-phase equilibrium is considered first. Subsequently, the equations are extended to cover
single phase and two-phase non-equilibrium fluid.
4.3.1 Two-Phase Equilibrium Fluid
For two-phase fluid, the density and enthalpy are functions of the pressure and quality. Since we know the
density, ρ, we can estimate the quality (xest) for the guessed P (assuming a homogeneous mixture) since:
توصیه من به کسی که میخواد کنکور بده دونستن ایناست
 
آخرین ویرایش:

sutak

عضو جدید
سلام
با اینکه هم دانشگاهی نیستیم اما میخوا چیزی بگم که به هممون ربط داره:دانشجوهای اصفهان
بچه ها!
جمعیت امام علی یه مدته اومده توی اصفهان شروع به کار کرده احتیاج به نیرو(مخصوصن دانشجووو) هم خیلی داره!
از کارایی که قبل عید انجام دادیم همیاری ماه(یه کیسه هایی می بریم دم خونه نیازمندا) - جشنواره غذا یه نفع نیازمندا- کمک به ترک دادن یه معتاد بعد از 16 سال - بوی عید(بردن بوی عید به یکی از مراکز بهزیستی اصفهان!) و ... بوده
خیلی حس خوبیه کمک کردن به آدما
اعضاء ش هم مردم هستند و هم دانشجوهای دانشگاه های مختلف اصفهان!
البته هنوز چشممون به جمال دوستای گل دانشگاه شهرضا روشن نشده:heart:
شما هم خواستین یه سری بزنین وبلاگ دوست داشتین همکاری کنین..
 

پترو

عضو جدید
کاربر ممتاز
سلام ..
كسي ميدونه چرا تابستون ارائه نميشه؟
کی گفته ارائه نمیشه ؟ مگه از پول بدشون میاد؟؟؟ اولش میگن ارائه نمیشه بعدش ارائه میکننن.مطمئن باش که دروس اصلی ارائه میشه من تجربه این رو داشتم.
 

Astm2010

عضو جدید
سلام.
کسی دیاگرام درسی رشته ی سرامیک رو داره؟؟؟؟
اگه میشه یه عکسی چیزی ازش بزارین....
درس خواص فیزیکی سخته؟؟؟
 

ali chipsi

عضو جدید
ترم تابستون

ترم تابستون

سلام و درود بر بچه های شهرضا
من دانشجوی ترم 2 پترو هستم و ترم 1 ،19 واحد پاس کردم این ترم هم 20 واحد گرفتم و اگه هادیان (استاتیک) و واحد (موازنه) پاسم کنند:cry: به یاری خدا با بقیه خیلی مشکلی ندارم حالا به نظر شما ترم تابستون واحد بگیرم یا نه؟:surprised:
 

پترو

عضو جدید
کاربر ممتاز
سلام و درود بر بچه های شهرضا
من دانشجوی ترم 2 پترو هستم و ترم 1 ،19 واحد پاس کردم این ترم هم 20 واحد گرفتم و اگه هادیان (استاتیک) و واحد (موازنه) پاسم کنند:cry: به یاری خدا با بقیه خیلی مشکلی ندارم حالا به نظر شما ترم تابستون واحد بگیرم یا نه؟:surprised:
آره بگیر حتما. تابستون راحت تر میتونی درسات رو پاس کنی. البته خوب رفت . آمدش تو گرما یه کمی سخت هست اما می ارزه.
 

Astm2010

عضو جدید
یک پروژه ای در دست انجام هست....

استاد های این دانشگاه مزخرف هستن...

باید حالشون رو گرفت....

نمونه سوالاشون رو باید پخش کرد..

قبل از پایان جلسه...یه 5 دقیقه سوال هارو دقیق حفظ کنید و اومدین بیرون...قبل از سلام به

دوستانتون..سوال هارو بنویسید....

تک دانشکده شیمی در این منطقه هستیم...استاد هامون هر بلایی بخان سرمون میارن...

در هفته های آتی نمونه سوال هایی رو میزارم...

شما هم همینکار رو انجام بدین...
 

Astm2010

عضو جدید
برگزاری امتحان در روز پدر


 

pars_hossein

عضو جدید
ارشد مهندسی شیمی

ارشد مهندسی شیمی

سلام
کسی میدونه ارشد مهندسی شیمی که آوردن گرایشش چیه؟
جهت بیکار نموندن!!!!!!!!!!
:que:
یک فارغ التحصیل بیکار مهندسی پلیمر
:surprised::surprised::surprised:
 

bp1368

عضو جدید
طفلان مسلم

طفلان مسلم

طرح طفلان مسلم توسط جمعیت امام علی با هدف آزادسازی و حمایت از مددجویان کانون اصلاح و تربیت در اصفهان آغاز به کار کرد . در این طرح کودکان مظلوم کانون اصلاح و تربیت را آزاد می کنیم و صدای آن ها به هم نوعانشان فریاد می زنیم تا فریادرسی یاریشان کند . در این راه به نیرو های داوطلب دانشجویی و مردمی نیازمندیم . زمینه ها مورد نیاز :
برنامه های آموزشی و فرهنگی و هنری : کسانی که تجربه و تخصص کار با این کودکان دارند و یا مایلند کلاس ها و برنامه هایی برای این کودکان برگزار کنند مانند مهارت های زندگی - تئاتر موسیقی- شاهنامه خوانی - نقاشی و ...
وکلا و حقوقدانان : برای پیگیری پرونده های مددجویان کانون اصلاح و تربیت
تبلیغات : توانایی چاپ تیلیغات - آشنایی با شرکت های تبلیغات پیامکی - داشتن لینک در روزنامه ها خبرگزاری ها و شهرداری و صدا سیما - کمک در عکاسی و فیلم برداری برنامه های طرح - کمک در پخش تبلیغات در دانشگاه ها و سطح شهر- تبلیغات اینترنتی
مالی و حمایتی : کسانی که مایلند که دیه ها مددجویان یا بخشی از آن را بپردازند و پس از آزادی از آن ها و خانواده هایشان در ارتباط باشند تا دوباره به کانون اصلاح و تربیت باز نگردند ( اشتغال - تحصیل - مسکن و ...)
انسان هم نوع دوست : هر انسانی که در دلش برای این کودکان مظلوم می تپد و هر گوه کمکی می تواند در این راه بکند

در ضمن هر هفته سه شنبه جلسات طرح برگزار می گردد

وبلاگ طرح : teflan-esf.blogfa.com
سایت جمعیت امام علی اصفهان : www.againstpoverty.ir
روابط عمومی طرح تلفن : 09397418616
 

sutak

عضو جدید
جمعیت امام علی(ع)

جمعیت امام علی(ع)

روستای محروم اصفهانی می شناسین؟
به تاپیک جمعیت امام علی سر بزنین
 

sutak

عضو جدید
برای اینکه خونواده ای رو تحت پوشش بگیریم یه فرم دو صفحه ای رو باید با مراجعه به خونه و پرسیدن سوالایی پر کنیم و بعد با نیازسنجی مشخص بشه این خونواده چه نیازهایی داره و الویت با کدوم نیازهاست
برای اینکه کاغذ بازی نشه و با توجه به اینکه ما دانشجوییم و باید با جاهای دیگه فرق داشته باشیم
یه سیستم کامپیوتری(برنامه) برای ساماندهی به پرونده خانواده ها نیاز داریم که به جای سرچ 200 تا کاغذ با تایپ چهارتا کلمه کارمون حل بشه..
دوستانی که آشنا به برنامه نویسی و یا اکسل هستند می تونن بهمون کمک کنند
خواهش می کنم در صورتی که می تونین کمک کنین با ما تماس بگیرید.. 09132112875
به تاپیک جمعیت امام علی(ع) سر بزنین
www.imamali-esf.blogfa.com
 

محمد سینا

عضو جدید
سلام آقا منم شهرضا درس خوندم. اول به ارشد اعتقاد نداشتم ولی الان می گم کاش خونده بودم.
همون گرایش خودمون یعنی پترو اگه می خوای دکترا هم بخونی اما اگه فقط فوق میخوای بگیری به نظر من MBA خیلی عالی
 

مینا 7563

عضو جدید
چه قدر این بچه های شهرضا بی بخار.....بی حال............
به جای اینکه اینقد تو محوطه فنی بپلکین یه سر بیاین از این ورا..........


اینم تقدیم به بروبچ

به شیطان گفتم: «لعنت بر شیطان»! لبخند زد.
پرسیدم: «چرا می خندی؟» پاسخ داد:«از حماقت تو خنده ام می گیرد»
پرسیدم: «مگر چه کرده ام؟» گفت: «مرا لعنت می کنی در حالی که هیچ بدی در حق تو نکرده ام»
با تعجب پرسیدم: «پس چرا زمین می خورم؟!»
جواب داد: «نفس تو مانند اسبی است که آن را رام نکرده ای. نفس تو هنوز وحشی است؛ تو را زمین می زند.» پرسیدم: «پس تو چه کاره ای؟»
پاسخ داد: «هر وقت سواری آموختی، برای رم دادن اسب تو خواهم آمد؛
فعلاً برو سواری بیاموز !!!



درضمن هر کس حدس بزنه نفر قبلیش کیه....


ولی عمرا کسی منو بشناسه.......................یسکه من سر بزیرم............باور کن
منتضر شما هستیم......................ستاد حمایت از شکست خوردگان عشقی
 

yareza2006

عضو جدید
چه قدر این بچه های شهرضا بی بخار.....بی حال............
به جای اینکه اینقد تو محوطه فنی بپلکین یه سر بیاین از این ورا..........


اینم تقدیم به بروبچ

به شیطان گفتم: «لعنت بر شیطان»! لبخند زد.
پرسیدم: «چرا می خندی؟» پاسخ داد:«از حماقت تو خنده ام می گیرد»
پرسیدم: «مگر چه کرده ام؟» گفت: «مرا لعنت می کنی در حالی که هیچ بدی در حق تو نکرده ام»
با تعجب پرسیدم: «پس چرا زمین می خورم؟!»
جواب داد: «نفس تو مانند اسبی است که آن را رام نکرده ای. نفس تو هنوز وحشی است؛ تو را زمین می زند.» پرسیدم: «پس تو چه کاره ای؟»
پاسخ داد: «هر وقت سواری آموختی، برای رم دادن اسب تو خواهم آمد؛
فعلاً برو سواری بیاموز !!!


درضمن هر کس حدس بزنه نفر قبلیش کیه....


ولی عمرا کسی منو بشناسه.......................یسکه من سر بزیرم............باور کن
منتضر شما هستیم......................ستاد حمایت از شکست خوردگان عشقی

ببخشید!
کدوم ورا ؟؟؟
پشت علوم یا سه راه؟ یا...
 
بالا