هندسه

Kruger

عضو جدید
[h=2][/h]
هندسه مطالعه انواع مختلف اشکال و خصوصیات آنهاست. همچنین مطالعه ارتباط میان اشکال ، زوایا و فواصـل است.

تاریخچه هندسه
واژه انگل یسی
Geometry ( هندسه ) از زبان یونانی ریشه گرفته است. این کلمه از دو کلمه «جئو»ٍ به معنای زمین و «متری» به معنای اندازه گیری تشکیل شده است.بنابراین هندسه اندازه گیری زمین است. مصریان اولیه نخستین کسانی بودند که اصول هندسه را کشف کردند. هر سال رودخانة نیل طغیان نموده و نواحی اطراف رودخانه راسیل فرا می‌گرفت.
این عمل تمام علایم مرزی میان تقسیمات مختلف را از بین می‌برد و لازم می‌شد دوباره هر کس زمین خود را اندازه‌گیری و مرزبندی نماید. آنها روشی از علامت‌گذاری زمین‌ها با کمک پایه‌ها و طناب‌ها اختراع کردند. آنها پایه‌‌ای را در نقطه‌ای مناسب در زمین فرو می‌کردند، پایه دیگری در جایی دیگر نصب می‌شد و دو پایه توسط طنابی که مرز را مشخص می‌ساخت به یکدیگر متصل می‌‌شدند.با دو پایه دیگر زمین محصور شده ، محلی برای کشت یا ساختمان سازی‌ می‌گشت.
با برآمدن یونانیان اطلاعات ریاضی قدم به مرحله ای علمی گذاشت.در آغاز تمام اصول هندسی ابتدایی بود. اما در سال 600 قبل از میلاد مسیح ، یک آموزگار یونانی به نام تالس، اصول هندسی را از لحاظ علمی ثابت کرد.
تالس‌ دلایل ثبوت برخی از فرضیه‌ها را کشف کرد و آغازگر هندسة تشریحی بود. اما دانشمندی به نام اقلیدس که در اسکندریه زندگی‌ می‌کرد ، هندسه را به صورت یک علم بیان نمود.
وی حدود سال 300 قبل از میلاد مسیح ، تمام نتایج هندسی را که تا به حال شناخته بود ، گرد آورد و آنها را به طور منظم ، در یک مجموعة 13 جلدی قرار داد. این کتابها که اصول هندسه نام داشتند ، به مدت 2 هزار سال در سراسر دنیا برای مطالعه هندسه به کار می رفتند.
براساس این قوانین ، هندسه اقلیدسی تکامل یافت. هر چه زمان می گذشت ، شاخه های دیگری از هندسه توسط ریاضیدانان مختلف ، توسعه می یافت.
امروزه در بررسی علم هندسه انواع مختلف این علم را نظیر هندسة تحلیلی و مثلثات، هندسه غیر اقلیدسی و هندسه فضایی مطالعه می کنیم.
خدمت بزرگی که یونانیان در پیشرفت ریاضیات انجام دادند این بود که آنان احکام ریاضی را به جای تجربه بر استدلال منطقی استوار کردند.قبل از اقلیدس، فیثاغورث( 572-500 ق.م ) و زنون ( 490 ق.م. ) نیز به پیشرفت علم ریاضی خدمت بسیار کرده بودند.
در قرن دوم قبل از میلاد ریاضیدانی به نام هیپارک، مثلثات را اختراع کرد. وی نخستین کسی بود که تقسیم بندی معمولی بابلی ها را برای پیرامون دایره پذیرفت.به این معنی که دایره را به 360 درجه و درجه را به 60 دقیقه و دقیقه را به 60 قسمت برابر تقسیم نمود و جدولی براساس شعاع دایره به دست آورد که وترهای بعضی قوس‌ها را به دست می داد و این قدیمی ترین جدول مثلثاتی است که تاکنون شناخته شده است.
بعد از آن دانشمندان هندی موجب پیشرفت علم ریاضی شدند. در قرن پنجم میلادی آپاستامبا، در قرن ششم ، آریاب هاتا ، در قرن هفتم ،براهماگوپتا و در قرن نهم ،بهاسکارا در پیشرفت علم ریاضی بسیار مؤثر بودند.
کلاس‌بندی هندسه
هنـدسه مقـدماتی به دو شاخه تقسیـم می گردد :
* هنـدسه مسطحه
* هندسه فضایی
در هندسه مسطحه ، اشکالی مورد مطالعه قرار می‌گیرند که فقط دو بعد دارند، هندسه فضایی ، مطالعه اشکال هندسی سه بعدی است. این بخش از هندسه در مورد اشکال سه بعدی چون مکعب ها ،استوانه ها، مخروط ها، کره ها و غیره است.
در هندسه مدرن شاخه‌های زیر مورد مطالعه قرار می‌گیرند:
* هندسه تحلیلی
* هندسه برداری
* هندسه دیفرانسیل
* هندسه جبری
* هندسه محاسباتی
* هندسه اعداد صحیح
* هندسه اقلیدسی
* هندسه نااقلیدسی
* هندسه تصویری
* هندسه ریمانی
* هندسه ناجابجایی
*هندسه هذلولوی
 

Kruger

عضو جدید
هندسه ی کروی - خطوط راست و تقاطر

هندسه ی کروی - خطوط راست و تقاطر

در بخش دوم این بحث به دو موضوع خطوط راست و تقاطر در هندسه ی کروی می پردازیم:
۱- خطوط راست
تاکنون با سطوح صاف و تخت سروکار داشته ایم و روی این سطوح خطوط راست رسم می کردیم. اما آیا روی سطح کروی هم، خطوط راست وجود دارند؟
به کره ی جغرافیائی دقت کنید؛
- آیا می توانید خط راستی روی آن رسم کنید؟
- تجسم کنید که روی سطح صافی به طور مستقیم راه می روید، مسیر شما چگونه است؟
حال فرض کنید روی سطح یک کره راه می روید، اگر مسیر خود را به طور مستقیم پیش گیرید، به کجا خواهید رسید؟ آیا به مکان اول خود باز نخواهید گشت؟

ویژگی های یک سطح کروی با ویژگی های یک سطح تخت تفاوت دارد.
همان طور که می دانیم برای تعیین فاصله ی بین دو نقطه از یک صفحه ی تخت، باید طول پاره خط واصل دو نقطه را که کمترین طول ممکن است، به دست آوریم. این پاره خط قسمتی از خطی است که آن را خط راست گویند.

حال کره ی جغرافیائی را در نظر بگیرید و روی آن قطب شمال را به قطب جنوب وصل کنید. توجه کنید به نحوی باید این دو نقطه را به هم وصل کنید که خط واصل کمترین طول را داشته باشد.

همان طور که می بینید به وسیله ی قسمتی از یک نصف النهار می توان این دو نقطه را به هم وصل کرد. در فضای کروی به هر یک از این نصف النهارها یک خط راست گویند. همچنین خط استوا یکی از خطوط راست می باشد. توجه کنید که این خطوط همگی یک ویژگی مشترک دارند. همگی دایره های عظیمه ی کره می باشند.( دایره های عظیمه بزرگترین دایره های روی سطح کروی اند که قطرشان برابر با قطر کره است)
بنابراین، در هندسه ی کروی؛
¼br> خطوط راست، دایره های عظیمه ی موجود بر سطح کروی اند، که قطری برابر با قطر کره دارند.

توجه کنید که روی سطح کروی، دایره های کوچکتر از دایره های عظیمه، خطوط منحنی هستند، زیرا نسبت به دایره های عظیمه(خطوط راست) انحنای بیشتری دارند.
۲- تقاطر
بر سطح کروی، دو نقطه را متقاطر گویند هرگاه بتوان آن دو را به کمک یکی از قطرهای کره به هم وصل کرد. در غیر این صورت آن دو نقطه غیر متقاطر خواهند بود.
توجه کنید که از دو نقطه ی واقع بر قطب شمال و قطب جنوب، یکی از قطرهای کره می گذرد. لذا این دو نقطه متقاطرند. از طرفی می دانیم که از این دو نقطه می توان بی شمار دایره ی عظیمه (از جمله نصف النهارها) عبور داد.
حال دو نقطه از سطح کروی را در نظر بگیرید، به طوری که هر دو بر یک نیمکره واقع باشند. از این دو نقطه چند دایره ی عظیمه می گذرد؟

از هر دو نقطه ی غیر متقاطری که بر سطح کره واقع باشند، تنها یک دایره ی عظیمه(خط راست) می گذرد،اما ازهردو نقطه ی متقاطر بی شمار دایره ی عظیمه عبور می کند.
 

Kruger

عضو جدید
هندسه‌های نااقلیدسی

هندسه‌های نااقلیدسی

هندسه ی اقلیدسی، همان هندسه ای است که شما در دبیرستان و راهنمایی خوانده اید یا می خوانید. هندسه ای است که بیش تر برای تجسم جهان مادی به کار می بریم.


هندسه ی اقلیدسی، همان هندسه ای است که شما در دبیرستان و راهنمایی خوانده اید یا می خوانید. هندسه ای است که بیش تر برای تجسم جهان مادی به کار می بریم. این هندسه از کتابی به نام اصول به دست ما رسیده که توسط اقلیدس ، ریاضی دان یونانی ، در حدود ۳۰۰ سال پیش از میلاد مسیح نگاشته شده است . تصوری که ما بر اساس این هندسه ازجهان مادی پیدا کرده ایم تا حدی زیاد توسط آیزاک نیوتن در اواخر سده ی هفدهم ترسیم شده است. اقلیدس شاگرد مکتب افلاطون بود.درحدود ۳۰۰ سال پیش از میلاد، روش قاطع هندسه ی یونانی و نگره ی اعداد را دراصول سیزده جلدیش منتشر کرد. با تنظیم این شاهکار، اقلیدس تجربه وکارهای مهم پیشینیان خود را در سده های جلوتر گردآوری کرد.کار عظیم اقیدس این بودکه چند اصل ساده ، چند حکم که بی نیاز به توجیهی پذیرفتنی بودند را دستچین کرد واز آن ها ۴۶۵گزاره نتیجه گرفت که بسیاری از آن ها پیچیده بودند و به طور شهود ی بدیهی نبودند وتمام اطلاعات زمان او را دربرداشتند .



یک دلیل زیبایی اصول اقلیدس این است که این همه را از آن اندک نتیجه گرفت .درافسانه آمده است که یکی از آموزندگان مبتدی هندسه از اقلیدس پرسید : ( از آموختن این مطالب چه عاید من می شود ؟ ) اقلیدس غلامش را خواند وگفت ((سکه ای به او بده ، چون که می خواهد از آن چه که فرا می گیرد، چیزی عایدش شود )).


حال دراین جا به بیان پنج اصل اقلیدس می پردازیم .


ـ اصل اول اقلیدس : به ازای هر نقطه ی p وهر نقطه ی Q که با p مساوی نباشد، خط یکتایی وجود داردکه برp و Q می گذرد.



این اصل اغلب به صورت غیر رسمی چنین بیان می شود : "هر دو نقطه یک خط منحصر به فرد را مشخص می سازند ."


ـ اصل دوم اقلیدس : به ازای هر پاره خط AB وهر پاره خط CD نقطه ی منحصر به فردی چون E وجود دارد، چنان چه؛ B میان A وE واقع است وپاره خط CD با پاره خط BE قابل انطباق است .



این اصل اغلب به طور غیر رسمی چنین بیان می شود : "هر پاره خط AB را می توان به اندازه ی پاره خط BE ، که با پاره خط CD قابل انطباق است امتداد داد ."



ـ اصل سوم اقلیدس : به ازای هر نقطه ی A که با O مساوی نباشد، دایره ای به مرکز O وشعاع OA وجود دارد .



ـ اصل چهارم اقلیدس : همه ی زاویای قائمه باهم قابل انطباق هستند.


چهار اصل اول اقلیدس همیشه به راحتی مورد قبول ریاضی دانان بوده است. ولی اصل پنجم ( اصل توازی ) تا سده ی نوزدهم موجب جدل و چون و چرا بوده است درواقع چنان چه که بعداً خواهید دید توجه به صورت های مختلف اصل توازی اقلیدس است که موجب بسط و توسعه ی هندسه های نااقلیدسی شده است .



دراین جا ما اصل توازی اقلیدس را بیان می کنیم ( به خاطر دشواری هایی که وجود دارد ) وبه جای آن اصل پلی فر را که معادل اصل توازی اقلیدس است بیان می کنیم .
ـ اصل پنجم اقلیدس ( اصل پلی فر یا اصل توازی ) : به ازای هر خط L وهر نقطه ی p غیر واقع برآن، تنها یک خط مانند m وجود دارد چنان چه از p می گذرد و با L موازی است .
اصل پنجم با هر چهار اصل دیگر متفاوت است . بدین معنی که ما نمی توانیم به طور تجربی تحقیق کنیم که آیا دو خط هم دیگر را قطع می کنند یانه . زیرا که ما فقط پاره خط ها را می توانیم رسم کنیم نه خطها را . می توانیم پاره خط ها را بیش از بیش امتداد دهیم تا ببینیم که آیا هم دیگر قطع می کنند یا نه، ولی نمی توانیم آن ها را تا بی نهایت امتداد دهیم .
ریاضی دانان درطول دو هزار سال تلاش کردند تا آن را از چهار اصل دیگر نتیجه بگیرند و یا اصل دیگری را که به خودی خود بداهت بیش تری داشته باشد، جانشین آن سازند. همه ی تلاش ها برای این که آن را از چهار اصل دیگر نتیجه بگیرند به ناکامی انجامید . ریاضی دانان به تدریج ناامید می شدند . ولی در اوایل سده ی نوزدهم دو هندسه ی دیگری پیشنهاد شد . یکی هندسه ی هذلولوی ( از کلمه ی یونانی هیپر بالئین به معنی افزایش یافتن که در آن فاصله ی میان نیم خط ها افزایش می یابد و دیگری هندسه ی بیضوی (از کلمه ی یونانی الیپن به معنی کوتاه شدن) که در این ، فاصله رفته رفته کم می شود و سرانجام نیم خط ها هم دیگر را می برند (قطع می کنند). این هندسه های نا اقلیدسی بعد ها توسط ک. ف . گاؤس و گ. ف. ب ریمان در قالب هندسه ی کلی تری بسط داده شدند.
ما سعی می کنیم بیش تر بحث مان در حوزه ی هذلولوی باشد، زیرا هندسه ی هذلولوی تنها به تغییر یکی از اصول اقلیدس نیاز دارد و می تواند به همان آسانی هندسه ی دبیرستانی فهمید ه شود. ولی در مورد هندسه های دیگر، مثل هندسه ی بیضوی ، بحث خیلی مشکل تر می باشد و درک آن نیاز به دانستن مفاهیم زیادی دارد که از حوصله ی بحث ما خارج است.
ـ قضیه ی کلی هذلولوی: درهندسه ی هذلولوی به ازای هر خط L و هر نقطه ی p غیر واقع بر L لااقل دو خط موازی با L ازp می گذرند .دانش آموزان می توانند این قضیه را با اصل پنجم اقلیدس که درصفحات قبل آمده است مقایسه نمایند وتفاوت های این دو هندسه را به وضوح مشاهده کنند .
ـ قضیه : درهندسه ی هذلولوی مستطیل وجود ندارد ومجموع زوایای همه ی مثلث ها از است .
ـ فرع: درهندسه ی هذلولوی همه ی چهار ضلعی های کوژ، مجموع زوایایی کم تر از دارند .



 

Kruger

عضو جدید
هندسه های نااقلیدسی - بخش اول

هندسه های نااقلیدسی - بخش اول

الف) مقدمه
علم هندسه مانند همه ی علوم دیگر از مشاهده و تجربه ناشی شده و ارتباط جدی با احتیاجات اقتصادی بشر دارد. کلمه ی «هندسه» یک کلمه ی یونانی و به معنی مساحی(اندازه ی زمین) است. هندسه و مفاهیم آن از طرفی زاییده ی تجربه و احتیاج بشرند و از طرف دیگر درستی آن باز هم در صحنه ی علوم علمی مورد آزمایش و استفاده قرار می گیرد.

باور مردم از زمان یونانیان باستان تا قرن نوزدهم این بود که هندسه ی اقلیدسی، حقیقت محض و بی کاستی است که فضای مادی را بطور کامل توجیه می کند. حتی کانت اعتقاد داشت که هندسه ی اقلیدسی، ذاتی ساختار ذهن انسان است...اما هندسه دانهای قرن نوزدهم نشان دادند که اولا هندسه ی اقلیدسی تنها هندسه ی ممکن نیست، ثانیا این که هندسه فضای مادی اقلیدسی یا نا اقلیدسی است، امری تجربی است که خارج از حیطه ی ریاضیات محض می باشد و ثالثا هندسه ی اقلیدسی سازگارتر است، اگر و فقط اگر هندسه ی نااقلیدسی سازگار باشد یعنی این دو هندسه به بیانی نادقیق«به یک نسبت درستند.»

ب) تاریخچه ی پیدایش هندسه ی نااقلیدسی

در حدود سیصد سال قبل از میلاد، اقلیدس کتاب «مقدمات» خود را به رشته ی تحریر در آورد، او بر اساس پنچ اصل موضوع و تعدادی اصطلاح اولیه تمام هندسه ی شناخته شده تا زمان خود را بصورت دستگاهمند و به روش اصل موضوعی در کتابش ذکر کرد. یکی از اصل های اقلیدس که بیشتر از همه توجه ریاضیدانان را بخود جلب کرد، اصل پنجم این کتاب بود. اقلیدس این اصل را که به «اصل توازی» معروف شده است این طور بیان می دارد:
«اگر خطی دو خط را چنان قطع کند که مجموع زوایای داخلی کتر از دو قائمه باشد، آن گاه دو خط همدیگر را در همان طرف قطع می کنند.»
که بعدها معادل آن یعنی:«از هر نقطه خارج یک خط راست، تنها یک خط راست موازی با آن خط و در همان صفحه ی مفروض میتوان رسم کرد.» تنظیم شد. تلاش برای اثبات این اصل براساس چهار اصل دیگربه بیش از بیست قرن انجامید و در این مدت بنظر می رسید که هندسه با بن بست مواجه شده است. در واقع از همان زمان که کتاب مقدمات اقلیدس نوشته شد، بحث و تفسیر درباره

آن آغاز گشت، این بحث ها از دو جهت بود:

۱) برطرف کردن ابهام هایی که در«تعریف ها»، «اصل ها» و «قضیه ها» وجود داشت.
۲) بحث درباره ی اصل توازی.
اما با وجود اینکه دانشمندان برای اثبات دقیق این اصل با عدم موفقیت های فراوان مواجه شده بودند، باز هم دست از کوشش بر نداشتند دلیل آن این بود که علمای هندسه اعتقاد داشتند که بدون روشن کردن موقعیت این اصل نمی توان ساختمان هندسه را بطور دقیق و کامل انجام داد، این تلاش ها سرانجام به کشف هندسه های نااقلیدسی منجر شد.
می گویند اولین کسی که به استقلال اصل پنجم یا به گفته ی کایزر «مشهورترین تک سخن در تاریخ علم» شک کرد، خود اقلیدس بود. بعد از او بطلمیوس (حدود ۱۵۰ سال پیش از میلاد) برای اثبات آن برخاست. پرودوکلوس نیز در قرن پنجم شرحی بر کتاب اصول نوشت و ضمن نشان دادن اشتباه برهان های قبلی، تلاش کرد تا اثباتی در این زمینه ارائه کند.
بعد از آن شاهد اثبات های دیگری بودیم که هیچ یک به نتیجه ی مطلوب نرسیدند. از جمله دانشمندان ایرانی که برای اثبات این اصل تلاش کرد میتوان به خیام، خواجه نصیر الدین طوسی، نیریزی و ابن هیثم اشاره نمود.
خیام در مقاله ی اول کتاب خود با نام«شرح ما اشکل من مصادرات کتاب اقلیدس»
به مساله ی اصل توازی پرداخت. او میگوید:«اشتباه دانشمندان سابق در این است که بنیان های فلسفی را در نظر نمی گیرند...». او که سخت طرفدار عقاید کانت بود منظور از عقاید فلسفی را همان عقاید کانت میداند و بدان اشاره می کند.
دانشمندان اروپایی نیز برای اثبات این اصل تلاش های در خور توجهی کردند کسانی همانند: جان والیس و جیرولاموساکری.
ساکری در ۱۶۹۷ کتابی با عنوان «اقلیدس مبرا از هر نقص» را ارائه کرد که در آن برای اثبات اصل پنجم که بیشتر به یک قضیه شبیه بود تا اصل، از روش برهان خلف استفاده کرد و سعی کرد تا به تناقض برسد، اما در واقع او هرگز به تناقضی نرسید. شاید اگر ساکری میدانست که به این دلیل ساده به تناقض نمی سد که اصلا تناقضی در کار نیست، کشف هندسه های اقلیدسی نزدیک به یک قرن زودتر صورت می پذیرفت.
اندکی بعد و در قرن ۱۸ و در آلمان لامبرت مانند ساکری با استفاده از برهان خلف سعی کرد اصل توازی را اثبات کند اما او نیز به تناقضی نرسید و در رده ی اثبات کننده گان ناکام این اصل قرار گرفت. چنین می نماید که وی دریافته بود که دلایل علیه بیشتر پی آمد سنت ها و احساسات بودند. او معتقد بود این دلایل از نوعی بودند که بایستی به یکباره از عرصه ی هندسه و نیز از میدان هر علمی بیرون رانده شود.
پژوهش های او درباره ی نظریه ی توازی بوسیله ی رساله ای از آدرین لژاندر طی سال ها کار روی اصل توازی، به مجموعه ای از اثبات های اشتباه دست یافت که از آن ها در کلاس هندسه اش استفاده میکرد اما دو گزاره ی مهم که لژاندر ثابت کرد پایه گذار «هندسه ی مطلق» (یعنی هندسه ی مبتنی بر چهار اصل اول) بود.
اصل توازی آن چنان ذهن او را به خود معطوف داشته بود که طی ۲۹ سال چند بار اصول هندسه اش را تجدید چاپ کرد و هر بار یکی از کوشش های تازه اش در مورد اصل توازی را در آن ارج نمود.


منبع : www.riazilog.com - لبخند ریاضی
 

Kruger

عضو جدید
هندسه نااقلیدسی و انحنای فضا

هندسه نااقلیدسی و انحنای فضا

علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و تکمیل شد، از قرون یازدهم میلادی به بعد به اروپا منتقل شد، بیشتر شامل ریاضی و فلسفه ی طبیعی بود. فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیک نیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و کنکاش در آن با خطرات زیادی همراه بود، اندیشمندان کنجکاو بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آن حساسیت نشان نمی داد. بنابراین ریاضیات نسبت به فیزیک از پیشرفت بیشتری برخوردار بود. یکی از شاخه های مهم ریاضیات هندسه بود که آن هم در هندسه ی اقلیدسی خلاصه می شد.
در هندسه ی اقلیدسی یکسری مفاهیم اولیه نظیر خط و نقطه تعریف شده بود و پنچ اصل را به عنوان بدیهیات پذیرفته بودند و سایر قضایا را با استفاده از این اصول استنتاج می کردند. اما اصل پنجم چندان بدیهی به نظر نمی رسید. بنابر اصل پنجم اقلیدس از یک نقطه خارج از یک خط، یک خط و تنها یک خط می توان موازی با خط مفروض رسم کرد. برخی از ریاضیدانان مدعی بودند که این اصل را می توان به عنوان یک قضیه ثابت کرد. در این راه بسیاری از ریاضیدانان تلاش زیادی کردند و نتیجه نگرفتند. خیام ضمن جستجوی راهی برای اثبات “اصل توازی” مبتکر مفهوم عمیقی در هندسه شد. در تلاش برای اثبات این اصل، خیام گزاره هایی را بیان کرد که کاملا مطابق گزاره هایی بود که چند قرن بعد توسط والیس و ساکری ریاضیدانان اروپایی بیان شد و راه را برای ظهور هندسه های نااقلیدسی در قرن نوزدهم هموار کرد. سرانجام و پس از دو هزار سال اصولی متفاوت با آن بیان کردند و هندسه های نااقلیدسی شکل گرفت. بدین ترتیب علاوه بر فلسفه ی طبیعی ریاضیات نیز از انحصار یونانی خارج و در مسیری جدید قرار گرفت و آزاد اندیشی در ریاضیات آغاز گردید.

۱-۵ اصطلاحات بنیادی ریاضیات

طی قرنهای متمادی ریاضیدانان اشیاء و موضوع های مورد مطلعه ی خود از قبیل نقطه و خط و عدد را همچون کمیت هایی در نظر می گرفتند که در نفس خویش وجود دارند. این موجودات همواره همه ی کوششهای را که برای تعریف و توصیف شایسته ی آنان انجام می شد را با شکست مواجه می ساختند. بتدریج این نکته بر ریاضیدانان قرن نوزدهم آشکار گردید که تعیین مفهوم این موجودات نمی تواند در داخل ریاضیات معنایی داشته باشد. حتی اگر اصولاً دارای معنایی باشند.
بنابراین، اینکه اعداد، نقطه و خط در واقع چه هستند در علوم ریاضی نه قابل بحث است و نه احتیاجی به این بحث هست. یک وقت براتراند راسل گفته بود که ریاضیات موضوعی است که در آن نه می دانیم از چه سخن می گوییم و نه می دانیم آنچه که می گوییم درست است.

دلیل آن این است که برخی از اصطلاحات اولیه نظیر نقطه، خط و صفحه تعریف نشده اند و ممکن است به جای آنها اصطلاحات دیگری بگذاریم بی آنکه در درستی نتایج تاثیری داشته باشد. مثلاً می توانیم به جای آنکه بگوییم دو نقطه فقط یک خط را مشخص می کند، می توانیم بگوییم دو آلفا یک بتا را مشخص می کند. با وجود تغییری که در اصطلاحات دادیم، باز هم اثبات همه ی قضایای ما معتبر خواهد ماند، زیرا که دلیل های درست به شکل نمودار بسته نیستند، بلکه فقط به اصول موضوع که وضع شده اند و قواعد منطق بستگی دارند.
بنابراین، ریاضیات تمرینی است کاملاً صوری برای استخراج برخی نتایج از بعضی مقدمات صوری. ریاضیات احکامی می سازند به صورت هرگاه چنین باشد، آنگاه چنان خواهد شد و اساساً در آن صحبتی از معنی فرضها یا راست بودن آنها نیست. این دیدگاه (صوریگرایی) با عقیده ی کهن تری که ریاضیات را حقیقت محض می پنداشت و کشف هندسه های نااقلیدسی بنای آن را درهم ریخت، جدایی اساسی دارد. این کشف اثر آزادی بخشی بر ریاضیدانان داشت.

۲-۵ اشکالات وارد بر هندسه اقلیدسی

هندسه ی اقلیدسی بر اساس پنچ اصل موضوع زیر شکل گرفت:

اصل اول - از هر نقطه می توان خط مستقیمی به هر نقطه ی دیگر کشید.
اصل دوم - هر پاره خط مستقیم را می توان روی همان خط به طور نامحدود امتداد داد.
اصل سوم - می توان دایره ای با هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد.
اصل چهارم - همه ی زوایای قایمه با هم مساوی اند.
اصل پنجم - از یک نقطه خارج یک خط، یک خط و و تنها یک خط می توان موازی با خط مفروض رسم کرد.

اصل پنجم اقلیدس که ایجاز سایر اصول را نداشت، به هیچوجه واجد صفت بدیهی نبود. در واقع این اصل بیشتر به یک قضیه شباهت داشت تا به یک اصل. بنابراین طبیعی بود که لزوم واقعی آن به عنوان یک اصل مورد سیوال قرار گیرد. زیرا چنین تصور می شد که شاید بتوان آن را به عنوان یک قضیه نه اصل از سایر اصول استخراج کرد، یا حداقل به جای آن می توان معادل قابل قبول تری قرار داد.

در طول تاریخ ریاضیدانان بسیاری از جمله، خواجه نصیرالدین طوسی، جان والیس، لژاندر، فورکوش بویویی و ... تلاش کردند اصل پنجم اقلیدس را با استفاده از سایر اصول نتیجه بگیرنر و آن را به عنوان یک قضیه اثبات کنند. اما تمام تلاشها بی نتیجه بود و در اثبات دچار خطا می شدند و به نوعی همین اصل را در اثباط خود به کار می بردند. دلامبر این وضع را افتضاح هندسه نامید.
یانوش بویویی یکی از ریاضیدانان جوانی بود که در این را تلاش می کرد. پدر وی نیز ریاضیدانی بود که سالها در این این مسیر تلاش کرده بود .
و طی نامه ای به پسرش نوشت: تو دیگر نباید برای گام نهادن در راه توازی ها تلاش کنی، من پیچ و خم این راه را از اول تا آخر می شناسم. این شب بی پایان همه روشنایی و شادمانی زندگی مرا به کام نابودی فرو برده است، التماس می کنم دانش موازیها را رها کنی.
ولی یانوش جوان از اخطار پدیر نهرسید، زیرا که اندیشه ی کاملاً تازه ای را در سر می پروراند. او فرض کرد نقیض اصل توازی اقلیدس، حکم بی معنی ای نیست. وی در سال ۱۸۲۳ پدرش را محرمانه در جریان کشف خود قرار داد و در سال ۱۸۳۱ اکتشافات خود را به صورت ضمیمه در کتاب تنتامن پدرش منتشر کرد و نسخه ای از آن را برای گایوس فرستاد. بعد معلوم شد که گایوس خود مستقلاً آن را کشف کرده است.
بعدها مشخص شد که لباچفسکی در سال ۱۸۲۹ کشفیات خود را در باره هندسه نااقلیدسی در بولتن کازان، دو سال قبل از بویی منتشر کرده است. و بدین ترتیب کشف هندسه های نااقلیدسی به نام بویویی و لباچفسکی ثبت گردید.

۳-۵ هندسه های نا اقلیدسی

اساساً هندسه نااقلیدسی چیست؟ هر هندسه ای غیر از اقلیدسی را نا اقلیدسی می نامند. از این گونه هندسه ها تا به حال زیاد شناخته شده است. اختلاف بین هندسه های نا اقلیدسی و اقلیدسی تنها در اصل توازی است. در هندسه اقلیدسی به ازای هر خط و هر نقطه نا واقع بر آن یک خط می توان موازی با آن رسم کرد.
نقیض این اصل را به دو صورت می توان در نظر گرفت. تعداد خطوط موازی که از یک نقطه نا واقع بر آن، می توان رسم کرد، بیش از یکی است. و یا اصلاً خطوط موازی وجود ندارند. با توجه به این دو نقیض، هندسه های نا اقلیدسی را می توان به دو گروه تقسیم کرد.

یک - هندسه های هذلولوی

هندسه های هذلولوی توسط بویویی و لباچفسکی بطور مستقل و همزمان کشف گردید.
اصل توازی هندسه هذلولوی - از یک خط و یک نقطه ی نا واقع بر آن دست کم دو خط موازی با خط مفروض می توان رسم کرد.

دو - هندسه های بیضوی

در سال ۱۸۵۴ فریدریش برنهارد ریمان نشان داد که اگر نامتناهی بودن خط مستقیم کنار گذاشته شود و صرفاً بی کرانگی آن مورد پذیرش واقع شود، آنگاه با چند جرح و تعدیل جزیی اصول موضوعه دیگر، هندسه سازگار نااقلیدسی دیگری را می توان به دست آورد. پس از این تغییرات اصل توازی هندسه بیضوی بصورت زیر ارایه گردید.
اصل توازی هندسه بیضوی - از یک نقطه ناواقع بر یک خط نمی توان خطی به موازات خط مفروض رسم کرد.
یعنی در هندسه بیضوی، خطوط موازی وجود ندارد. با تجسم سطح یک کره می توان سطحی شبیه سطح بیضوی در نظر گرفت. این سطح کروی را مشابه یک صفحه در نظر می گیرند. در اینجا خطوط با دایره های عظمیه کره نمایش داده می شوند. بنابراین خط ژیودزیک یا مساحتی در هندسه بیضوی بخشی از یک دایره عظیمه است.
در هندسه بیضوی مجموع زوایای یک مثلث بیشتر از ۱۸۰ درجه است. در هندسه بیضوی با حرکت از یک نقطه و پیمودن یک خط مستقیم در آن صفحه، می توان به نقطه ی اول باز گشت. همچنین می توان دید که در هندسه بیضوی نسبت محیط یک دایره به قطر آن همواره کمتر از عدد پی است.

۴-۵ انحنای سطح یا انحنای گایوسی

اگر خط را راست فرض کنیم نه خمیده، چنانچه ناگزیر باشیم یک انحنای عددی k به خطی نسبت دهیم برای خط راست خواهیم داشت k=o انحنای یک دایره به شعاع r برابر است با k=۱/r.
تعریف می کنند. همچنین منحنی هموار، منحنی ای است که مماس بر هر نقطه اش به بطور پیوسته تغییر کند. به عبارت دیگر منحنی هموار یعنی در تمام نقاطش مشتق پذیر باشد.
برای به دست آوردن انحنای یک منحنی در یک نقطه، دایره بوسان آنرا در آن نقطه رسم کرده، انحنای منحنی در آن نقطه برابر با انحنای دایره ی بوسان در آن نقطه است. دایره بوسان در یک نقطه از منحنی، دایره ای است که در آن نقطه با منحنی بیشترین تماس را دارد. توجه شود که برای خط راست شعاع دایره بوسان آن در هر نقطه واقع بر آن بینهایت است.
برای تعیین انحنای یک سطح در یک نقطه، دو خط متقاطع مساحتی در دو جهت اصلی در آن نقطه انتخاب کرده و انحنای این دو خط را در آن نقاط تعیین می کنیم. فرض کنیم انحنای این دو خط
k۱=۱/R۱ and k۲=۱/R۲
باشند. آنگاه انحنای سطح در آن نقطه برابر است با حاصلضرب این دو انحنا، یعنی :
k=۱/R۱R۲
انحنای صفحه ی اقلیدسی صفر است. همچنین انحنای استوانه صفر است:
k=o
برای سطح هذلولوی همواره انحنای سطح منفی است :
k<>
برای سطح بیضوی همواره انحنا مثبت است :
k>o

در جدول زیر هر سه هندسه ها با یکدیگر مقایسه شده اند:


نوع هندسه
تعداد خطوط موازی
مجموع زوایای مثللث
نسبت محیط به قطر دایره
اندازه انحنا
اقلیدسی
یک
۱۸۰
عدد پی
صفر
هذلولوی
بینهایت
< 180
> عدد پی
منفی
بیضوی
صفر
> ۱۸۰
< عدد پی
مثبت


۴-۶ مفهوم و درک شهودی انحنای فضا

سوال اساسی این است که کدام یک از این هندسه های اقلیدسی یا نا اقلیدسی درست است؟

پاسخ صریح و روشن این است که باید انحنای یک سطح را تعیین کنیم تا مشخص شود کدام یک درست است. بهترین دانشی کا می تواند در شناخت نوع هندسه ی یک سطح مورد استفاده و استناد قرار گیرد، فیزیک است. یک صفحه ی کاغذ بردارید و در روی آن دو خط متقاطع رسم کنید. سپس انحنای این خطوط را در آن نقطه تعیین کرده و با توجه به تعریف انحنای سطح حاصلضرب آن را به دست می آوریم. اگر مقدار انحنا برابر صفر شد، صفحه اقلیدسی است، اگر منفی شد می گوییم صفحه هذلولوی است و در صورتی که مثبت شود، ادعا می کنیم که صفحه بیضوی است .
در کارهای معمولی مهندسی نظیر ایجاد ساختمان یا ساختن یک سد بر روی رودخانه، انحنای سطح مورد نظر برابر صفر است، به همین دلیل در طول تلریخ مهندسین همواره از هندسه اقلیدسی استفاده کرده اند و با هیچگونه مشکلی هم مواجه نشدند. یا برای نقشه برداری از سطح یک کشور اصول هندسه ی اقلیدسی را بکار می برند و فراز و نشیب نقاط مختلف آن را مشخص می کنند. در این محاسبات ما می توانیم از خطکش هایی که در آزمایشگاه یا کارخانه ها ساخته می شود، استفاده کنیم. حال سیوال این است که اگر خطکش مورد استفاده ی ما تحت تاثیر شرایط محیطی قرار بگیرد چه باید کرد؟ اما می دانیم از هر ماده ای که برای ساختن خطکش استفاده کنیم، شرایط فیزیکی محیط بر روی آن اثر می گذارد. البته با توجه با تاثیر محیط بر روی خطکش ما تلاش می کنیم از بهترین ماده ی ممکن استفاده کنیم. بهمین دلیل چوب از لاستیک بهتر است و آهن بهتر از چوب است.
اما برای مصافتهای دور نظیر فواصل نجومی از چه خطکشی (متری) می توانیم استفاده کنیم؟ طبیعی است که در اینجا هیچ خطکشی وجود ندارد که بتوانیم با استفاده از آن فاصله ی بین زمین و ماه یا ستارگان را اندازه بگیریم. بنابراین باید به سایر امکاناتی توجه کنیم که در عمل قابل استفاده است. اما در اینجا چه امکاناتی داریم؟ بهترین ابزار شناخته شده امواج الکترومغناطیسی است. اگر مسیر نور در فضا خط مستقیم باشد، در اینصورت با جرت می توانیم ادعا کنیم که فضا اقلیدسی است. برای پی بردن به نوع انحنای فضا باید مسیر پرتو نوری را مورد بررسی قرار دهیم .
اما تجربه نشان می دهد که مسیر نور هنگام عبور از کنار ماده یعنی زمانی که از یک میدان گرانشی عبور می کند، خط مستقیم نیست، بلکه منحنی است. بنابراین فضای اطراف اجسام اقلیدسی نیست. به عبارت دیگر ساختار هندسی فضا نااقلیدسی است.
 
بالا