طرز کار توربین

jalilianfar

عضو جدید
مقدمه :لازمه کار توربین وجود یک سیال کار مناسب، یک منبع انرژی سطح بالا و یک منبع برای انرژی سطح پایین می باشد. هنگامی که سیال از درون توربین گذر می کند قسمتی از انرژی آن به طور مداوم بیرون کشیده شده و به کار مفید مکانیکی تبدیل می شود.توربین های بخار و گاز از انرژی حرراتی استفاده می کنند در حالی که توربین های آبی از انرژی فشار استفاده می کنند . اهداف اولیه یک طراح توربین حصول اطمینان از انجام این پروسه با حداکثر بازده و داشتن نیرو گاهی با حداکثر اعتماد در کمترین هرینه است . اهداف ثانویه این است که نیروگاه به کمترین نظارت و کمترین زمان برای راه اندازی نیاز داشته باشد که این اهداف با یکدیگر مغایرت دارند نتیجه نهایی سازش قابل قبول بین آنها خواهد بود .انواع توربین :الف) از نظر جهت جریان سیال داخل توربینتوربین جریان محوری : توربین که در آن مسیر جریان سیال به هنگام تبادل انرژی در داخل توربین موازی و در امتداد محور تو می باشد . (شکل1)در این توربین ها بخاری که از یک طرف وارد مراحل مختلف توربین می شود به صورت محوری از طریق نیغه های که شعاعی نصب شده اند جریان پیدا می کند.توربین جریان شعاعی : توربین که در آن مسیر جریان سیال در داخل توربین حین تبادل انرژی در صحنه عمود بر محور تور باشد . (شکل2) در این توربینها بخار وارد مرکز توربین شده و از طریق 2 رتور که بر خلاف هم می چرخند منبسط شده و نهایتاً از طریق لوله خروجی به طرف بیرون رانده می شود . این نوع توربین برای طراحی با ظرفیت زیاد بخاطر جرم تیغه هایی که باید بروی حاشیه خارجی قرار گیرد قابل قبول نیست بزرگترین ظرفیت توربین با جریان شعاعی واحد 460 مگاوات باراکتورهای آب جوش در سوتد می باشد.می باشد . توربین های بزرگ بخار امروزی از نوع محوری هستند که از نظر تیغه گذاری جهت جریان به 3 دسته تقسیم می شوند . ساده ترین شکل تیغه گذاری بصورت تک جریانی است . در جریان دو بل یا 2 راها صفحات تیغه داخل محفظه توربین به صورتی قرار یم گیرند که بخار در 2 جهت مخالف به صورت محوری جریان یابد . بخار از وسط سیلندر توربین وارد شده و به 2 شاخه تقسیم می شود که در خلاف جهت هم به سوی انتها رتور جریان می یابند مزایای آن جلوگیری از بکار بردن تیغه های بسیار بلند و کاهش نیروی رانش محوری توسط بخار بر وری تیغه ها است . کاهش ضربه هدف اصلی برای توربین با جریان معکوس است در آن بخار ا زطریق یکدسته تیغه وارد شده و آنگاه از طریق کانالهایی بطور داخلی و یا خارجی به سمت دسته دوم صفحات یا تغیه در خلاف جهت جریان قبل و در امتداد محور هدایت می شود . برای دبی بیشتر عبور می توان از چندین قسمت موازی استفاده کرد.اگر سیال در خروجی توربین فشار پایین شعاعی داشته باشد . لازم است بخار به صورت زاویه قائمه چرخانده شود تا سیال به تیغه هایی با جریان محوری وارد و از آن خارج و در همان زمان در اطراف لوله توزیع شود . مساحت ورودی و خروجی باید فضای کافی برای ایجاد یکنواخت بدون افت فشار ناخاسته و یا جدایی جریان داشته باشد ممکن است که در خروجی توربین فشار پایین لوازم نصب شوند که جهت جریان را هدایت کنند . مانند اگزوز بومان که روی توربین جایکه آخرین مرحله تیغه های توربین قرار گرفته اند استفاده می شود در این طرح مرحله ما قبل توربین جدا می شود . جریان بخار از طریق حلقوی خارجی این مرحله مستقیماً به سوی کندانسور هدایت می شود و این هنگامی است که سیال از طریق قسمت داخلی در مسیری به سوی کندانسور جریان پیدا می کند زیرا 2 قسمت ما قبل تیغه های متحرک وظایف متعددی دارند.ب) از نظر تغییرات فشار :توربین ضربه ای : در این توربینها بخشی از حرارت بخار در تیغه های ثابت تبدیل به سرعت می شود . هیچگونه تلفات گرمایی و در نتیجه هیچگونه افت فشاری در عرض تیغه های متحرک وجود ندارد بنابر این کار مکانیکی انجام شده در تیغه های متحرک تنها در اثر تلف شدن قسمتی از سرعت کسب شده در تیغه های ثابت حاصل می شود . مقدار سرعت بهینه در پره ضربه ای یک ردیف تقریباً نصف سرعت مطلق بخار ورودی است . چنین سرعتی بسیار بیشتر از ماکزیموم سرعت مجازی که مقدار آن با توجه به تنشهای گریز از مرکز در محور تعیین می شود علاوه بر آن سرعتهای زیاد بخار منجر به تلسفات اصطکاک زیاد نیز می شود در نتیجه بازده توربین کاهش می یابد.توربین شربه ای مرکب سرعتی : مانند توربین یک ردیفه است که از یک مرحله نازل تشیکل می شود و با دنبال آن به جای یک ردیف پره متحرک چند ردیف پره قرار یم گیرند این ردیفها به وسیله ردیفهای پره های ثابت که به وسیله متصل هستند از هم جدا می شوند وظیفه پره های ثابت تنها هدایت بار خروجی از ردیف اول پره های متحرک به ردیف دوم این پره ها می باشد (شکل ).توربین ضربه ای مرکب فشاری : در این توربین ها افت آنتالپی بصورت مسلوی بین نازل های چندین ردیف ضربه ای که به طور متوالی قرار می گیرند تقسیم می کنند از این رو سرعتهای بخار ورودی به هر ردیف اساساً با هم مساوی و مقدار آن متناسب با һ∆ کاهنده می باشد . با وجود اینکه افت آنتالین در ردیفها یکسان است افت فشار در آنها چنین نیست . این توربینها نیاز به آب بندی دیافراگم برای جلوگیری از در توربینهای بزرگ که بازده نسبت به هزینه سرمایه گذاری اهمیت دارد استفاده می شود.توربین های عکس العملی : در این توربین ها فقط نیمی از افت انرژی حرارتی در تیغه های ثابت روی می دهد و نیم دیگر در تیغه های متحرک این عمل باعث افزایش سرعت بخار در تیغه های متحرک شده که متقاباً باعث ایجاد یک ضربه یا عکس العمل در جهت مخالف حرکت سیال خروجی از تیغه های می گردد . همچنین مقداری ضربه در تیغه های متحرک اتفاق می افتد که از تغییر مسیر سیال ناشی می شود ولی برای ایجاد یک افت سرعت خالص کافی نمی باشد تیغه های ثابت نیز افت گرما را به سرعت تبدیل می کنند .ج) آرایش و پیکربندی توربینها :توربین های تک سیلندر : محدوده تولید برق برای این توربینها در حدود100 مگا وات می باشد که بستگی به اصول طراحی و شرایط اولیه بخار استفاده کردن یا نکردن از سیکل باز گرم ، شرایط خروجی بخار و همچنین سرعت چرخش دارد . از نظر چگونگی پذیرش بخار به 4 دسته 1- جریان مستقیم یکراه 2- توربین با مرحله باز گرمایش 3- توربین بازیرکش بخار به منظور گرمایش آب تغذیه و یا به عنوان تولید همزمان از توربین زیر کش می شود 4- توربین القایی که در آن بخار فشار پایین در یک طبقه فشار پایین به توربین تزریق می شود . شکل( )توربین های چند سیلندر : تعداد مراحل بستگی به شرایط ورود و خروج و ملاحظات طراحی و سازندگان دارد . توربینهای I P و LP معمولاً 2 جریانه هستند . تعداد مراحل فشار پایین در این توربین ها موجب کاهش ارتفاع پره ردیف آخر می شود . تعداد سیلندر توربین LP را اگر شافت توربین LP با سرعت دورنی 1800 دو بر دقیقه و شناخت توربین فشار بالا با سرعت 3600 دور بر دقیقه بچرخد می توان کاهش داد . به عنوان مثال یک توربین با توان خروجی 900-500 مگاوات در نیروگاهی که با سوخت فسیلی کار می کند و یا نیروگاه هسته ای خنک شونده با گاز شامل یک توربین فشار متوسط و 2 توربین فشار پایین می باشد .توربین تاندوم یاردیخی : توربینی که تمام سیلندرهای آن روی یک محور قرار می گیرند و به یک ژنراتور وصل می شود .توربین متقاطع : توربینی که سیلندرهای آن بر روی 2 شافت موازی و مجزا که ژنراتور جدا از هم را می چرخانند نصب می شود . که برای جلوگیری کردن از طولانی شدن شافت در توربینهای چند سیلندر از ترکیب متقاطع استفاده می کنند ( شکل ).د) نحوه قرار گرفتن لوله خروجی توربین و اتصال به کندانسور :نحوه قرار گرفتن توربین LP و اتصالش با کندانسور به طور محسوسی به محل کندانسور و جهت قرار گرفتن لوله های آن نسبت به محور توربین بستگی دارد . از لحاظ نصب کندانسورها به 2 دسته تقسیم می شوند 1- زیر توربین نصب می شوند که لوله ها یا در جهت محور یا عمود بر آن هستند 2- پهلوی توربین نصب می شوند انواع مختلفی مانند انتگرالی و صندوق دارند ( شکل ).در این کندانسورها بخاطر آنکه لوله ها به صورت محوری قرار گرفته اند فضای بخار کندانسور می تواند بخش بخش شود و لذا موجب کاهش فشار کندانسور در قسمت سرد انتهایی باشد و این بازده کمی را حاصل می کند . اشمل اصلی آن است که کندانسور به لحاظ ترکیب سازه ای بارگذاری و فونداسیون یک قسمت مهم از اجزای توربین می شود این باعث می شود که طراحی کندانستور بستگی به تعداد و اندازه توربین های LP پیدا کند ه مانع دستیابی به طراحی دسته جمعی توبینها و پیچیدگی مسائل طراحی بین یک سازنده توربین و کندانسور می گردد . این طراحی موجب سخت شدن دسترسی ه توربین جهت تعمیرالت به عنوان مثال تعمیر پایه یا تاقانها می گردد و نیروگاههای جدید با استفاده از یک کانال اتصال بین فلنج هروجی توربین و فلنج ورودی کندانسور استفاده گردید . چون لوله های کندانسور به طور معمول بسیار بلندتر از پهنای پوست توربین هستند این کانالها به صورت ذوذنقه ای شکل ساخته می شوند.n = 120 f/pهـ) سرعت چرخش توربین :در موارد معمول چون باید توربین بدون گیر برکس به ژنراتور کویل شود باید توربین با ژنراتور سنکرون باشد.که f فرکانس سیلستم برق ، p تعداد جفت قطبهای ژنراتور و n سرعت چرخش عملاً فقط 2 فرکانس شبکه در جهان وجود دارد 50 و 60 هرتز و ژنراتورها معمولاً به صورت 2 قطبی یا چهار قطبی طراحی می شوند پس ژنراتورهای 60هرتز با 2 سرعت 2 قطبی 3600 دور بر دقیقه و چهار قطبی 1800 دور بر دقیقه و ژنراتورهای 50 هرتز نیز با 2 سرعت 2 قطبی 3000 دور بر دقیقه و 4 قطبی 1500 دور بر دقیقه تبعیت می کنند.در توربین های کوچک که به منظور راندمان پمپ تغذیه بویلر برای واحدهای بزرگ از سرعت 1500 دقیقه استفاده می کنند . همچنین توربین های با سرعت متغییر برای سیرکوله کردن گاز در راکتورهای خنک شونده با گاز استفاده شده است و توربینهای تک مرحله ای کوچک هم بعضی اوقات برای چرخش پمپهای تغذیه اظطرای در نیروگاه هسته ای استفاده می گردند.عوامل انتخاب سرعت چرخش توربین و ژنراتور : 1- اندازه واحد و شرایط بخار اولیه و طرح های موجود 2- استانداردهای مربوط به تعویض قطعات یدکی 3- رابطه اندازه با وزن و قیمت و حمل نقل 4- محدوده مورد نظر برای قابلیت اعتماد، عملکرد انعطاف پذیر و راحتی نگهداری و تعمیرات 5- نسبت بازده گرمایی و مطابقت اقتصادی 6- انتخاب مناسب از توربین های LP به منظور خروجی مناسب برای تعمیرات بخار مافوق گرم ترجیحاً از توربین با جداکثر سرعت استفاده می شود . ولی در خروجی بزرگت نتیجتاً توربین LP باید متحمل فشارهای خیلی بالا یا بار خروجی خیلی زیاد شود به همین منظور سیستم را با یک توربین نیم سرعت همراه می کنند.توربینهای با ترکیب متقاطع با یک خطHP/I P تمام سرعت و یک خط LP نیم سرعت عملاً در سیستمهای 60 هرتز جایکه بار خروجی تشدید شده است استفاده می شود.برای تجهیزات بخار اشباع بالانس خیلی یکنواخت تر می باشد و بخار با نسبت دبی حجمی بالاتر برای یک خروجی معین بار خروجی بحرانی تر را می سازد بنابر این سرعت دورانی عموماً 1800 دور بر دقیقه می باشد.در بعضی موارد آنیم توربین اما با حداکثر دور انتخاب می شدند تا راندمان یک توربین LP را داشته باشند و خروجی بالا رفته و سیستم برای سوپر هیت با سرعت بالا آماده شود.ماشینهای 1500 دور بر دقیقه ممکن است برای کمترین فشار خروجی از لحاظ اقتصادی بهینه تر باشد. در مقابل ماشین های 3600 دور بر دقیقه ای جایی که فشار خروجی بهینه بالای .mbar9 است می توانند راندمان بهتری داشته باشند.محدودیت های خروجی : 1- افت شیر بخار 2- کم شدن ظرفیت هنگامی که بخار از یک نازل عبور می کند ا زطریق تبدیل گرما انرژی جنبشی کسب می کند . انبساط بخار بعد از نازل باعث می شود که مقداری ازانرژی جنبشی از طریق فشار و افزایش انتروپی همراه است.افت شیر بخار :در شیر گاوارنر جائیک بخار بعد از شیر به سرعت منبسط می شود و همه انرژی جنبشی تولید شده از طریق اصطکاک به حرارت تبدیل می گردد . این عمل باعث یم شود که آنتالین سیال به اندازه آنتالین آن در مدخل ورودی باقی بماند اما به قیمت افزایش زیاد انتروپی و کاهش فشار تمام می شود این عمل به عنوان خفقان معروف بوده و برای پایین آوردن بار از آن استفاده یم شود کاهش بیشتر بار از طریق کم کردن دهانه شیر انجام می گیرد .کم شدن ظرفیت :افت فشار ایجاد شده در نازلهای مدخل ورودی توربین و تمامی پره های ثابت که در پی می آیند باعث می شود که دبی جرمی توربین و در نتیجه قدرت خروجی کاهش یابد بین دبی جرمی و افت فشار در توربین رابطه ای وجود دارد که به قانون بیضی معروف است. شدت دبی جرمی ، فشار ورودی و خروجی و K ثابت است . اگر اثر دمای ورودی نیز در نظر بگیریم.آنالیز جامع تری نشان داد که V حجم مخصوص و n ضریب پلی تروپیک نیز در این رابطه دخیلند . قانون بیضی وسیله مفیدی برای مدل کردن اثرات بار جزئی روی یک توربین می باشد . عدد K قانون بیضی را می توان از طریق طراحی یا به صورت اطلاعات اندازه گیری شدی بدست آورد و با دانشتن میزان دبی مورد نیاز می توان متعاقباً فشار را برای هر مرحله توربین از طرف دهانه خروجی ، جائیکه شرایط همان شرایط ورودی کندانسور می باشد بدست آورد.افت توربین :1- اصطکاک : در سراسر توربین از جمله در شیپوره ها و پره های متحرک وجود دارد .2- اتلاف پروانه ای : دوران رتور و پره نیروی گریز از مرکزی بر بخار اعمال می کند که موجب می شود بخشی از آن به صورت شعاعی جریان یابد و در طول پره های متحرک کشیده شود . هنگامی که پذیرش بخار به پره های متحرک کمتر از بار کامل است وضعیتی چرخش در پره متحرک پدید می آید که موجب اتلاف انرژی می شود .3- نشست : در داخل بخار می توان از فاصله بین نوک پره متحرک و پوسته در صورت افت فشار در پره نشست کند در خارج در محل یاتاقانهای مختلف محور صورت می گیرد .4- رطوبت بخار : ذرات ذرات مایع که دارای سرعت کمی هستند روی پره های متحرک ریخته می شوند و تحت زوایایی غیر از زاویه طراحی شده با پره برخورد می کنند و موجب کاهش کار مکانیکی رتور یم شوند سرعت ذرات دیگر نیز به وسیله بخار افزایش یم یابد و در اثر تبادل اندازه حرکت مقداری از انرژی بخار گرفت یم شود .5- خروج بخار چون بخار خروجی از آخرین طبقه توربین به علت پایین بودن فشار بالا بودن حجم مخصوص با توجه به انرژی جنبشی بخار نوعی افت است.6- اتلاف پر انتقال گرما : به 3 صورت رسانش ،همرفت و تابش صورت می گیرد . رسانش در داخل توربین و بین طبقات آن انجام می گیرد و به وسیله همرفت که عمدتاً ناشی از سرعتهای بالای بخاراست تقویت می شود . رسانش همچنین بین پوسته توربین و پایه آن صورت می گیرد اتلاف ناشی از همرفت و تابش از طریق پوسته به سالن می رسد . در مورد توربینهای فشار بالا محسوس تر است چون دما در آنها بالا است .7- اتلاف مکانیکی و الکتریکی : توربین کار تولیدی را به یک مواد برق تحویل می دهد در جریان ایین کار با اتلافهای اصطکاکی دریاتاقانها ، مکانیزم کنترل کننده ها و جعبه دنده کاهنده در صورت وجود مواجه می شویم . تلفات مکانیکی عمدتاً ثابت و مستقل از بار است . و از این رو درصد آن با کاهش بار افزایش می یابد که در توربین های بزرگ کمتر است .تیغه های متحرک : تیغه های متحرک یک توربین بخاری را که قبلاً در نازل ، تا تعدادی تیغه ثابت شتاب گرفته است دریافت کرده و انرژی جنبشی آن را به صورت کار مکانیکی روی شافت توربین تبدیل می کنند . بر خورد بخار با تیغه ها باعث تغییر مسیر حرکت بخار می شود که نتیجتاً تغییر ممنتوم سیال را در برداشته و لذا تولید نیرو می کند به طور ایداه آل زاویه تغییر جهت بخار هر چه به 180 درجه نزدیکتر باشد بهتر است . ( شکل ) نحوه انتقال انرژی که در تیغه های متحرک صورت می گیرد بستگی دارد به ضربه ای و عکس العملی بودن توربین .پره های متحرک توربین عکس العملی چون مثل شیپوره عمل می کنند شکلی همانند پره های ثابت دارند هر چند که انحنای آنها در جهت مخالف است شکل ( ) دیاگرام سرعت برای یک توربین عکس العملی نشان می دهد که سرعت نسبی بخار جدا شده از تیغه های متحرک از سرعت نسبی بخار ورودی به تیغه های متحرک بزرگتر است علت این امر افزایش سرعت روی تیغه های متحرک است که ناشی از وجود افت گرما در آنجا می باشد . پره های متحرک توربین ضربه ای معمولاً متقارنند و اندازه زوایای ورودی و خروجی و در آنها در حدود 20 درجه است پره های ضربه ای کوتاهند و مسافت سطح مقطع عبور جریان در آنها ثابت است . شکل ( ) دیاگرام سرعت یک توربین ضربه ای نشان می دهد که نسبی بخار جدا شده از تیغه متحرک کمتر از سرعت نسبی بخار ورودی به تیغه متحرک است به دلیل تبدیل انرژی جنبشی به مکانیکی در تیغه های متحرک است.تاثیر بر طراحی توربین :تفاوتهای مهمی در طراحی توربینهای ضربه ای و عکس العملی وجود دارد . تیغه های متحرک در توربین ضربه ای روی دیسکهایی قرار می گیرند که خود جزئی از یک شافت با قطر کوچک هستند یا به آن وصل می شوند نیروی محوری روی رتور کوچک است زیر افت فشار در عرض تیغه ها وجود ندارد . وجود افت فشار در عرض تیغه های متحرک در توربینهای عکس العملی عمر دیسکها را کم می کند در عوض دیسکها را با شافتهای بزرگ تو خالی که به رتور استوانه ای معروف هستند،جایگزین می کنند.بازده تیغه :بازده که با آن انتقال انرژی به تیغه های متحرک صورت می گیرد عمدتاً بستگی به نسبت سرعت تیغه متحرک به سرعت مطلق بخار دارد . نسبت سرعت روی بازده در توربین ضربه ای به گونه ای با آنچه که در یک مرحله عکس العملی روی می دهد متفاوت است.کار انجام شده توسط تیغه متحرکهمان گونه که در شکل ( ) نشان داده شده فرض می کنیم است و =B Ө برای کار انجام شده داریم:انرژی در دسترس تیغه های نتحرک مقدار انرژی است که به تیغه های ثابت داده می شود.انرژی در دسترساین امر نشان دهنده آن است که نمودار بازده به صورت سهمی است مقدار بازده ماکزیموم را می توان با مشتق گرفتن از رابطه فوق نسبت به U و مساوی صفر قرار دادن آن به دست آورد.که نتیجه می دهد.( برای توربین ضربه ای )بازده ایده آل در مرحله عکس العملی : از آنجا که تیغه های متحرک و ثابت شکل یکسانی دارند با توجه به شکل لذابنابر این داریم :در یک مرحله عکس العملی همانوگنه که یک کاهش آنتالپی در عرض تیغه های متحرک وجود دارد در عرض تیغه های ثابت نیز کاهش آنتالپی داریم .انرژی در دسترس شکل دیاگرام بازده یک مرحله عکس العملی را در مقایسه با یک مرحله ضربه ای نشان می دهد.برای رسیدن به بازده ماکزیموم برای هر 2 نوع طراحی ، تعداد مرحله ها در توربین عکس العملی باید 2 برابر تعداد آنها در توربین ضربه ای باشد این بعلت آن است که نسبت سرعت زیاد ( ) در توربین عکس العملی به معنی آن است که تنها افت حرارت کمی می تواند در هر مرحله انجام دهد. برای یک افت آنتالپی معلوم در هر طبقه برای به دست آوردن ماکزیموم بازده لازم است سرعت تیغه طبقه عکس العملی از طبقه شربه ای بیشتر باشد . برای یک سرعت تیغه معلوم سرعت سیال در طبقه عکس العملی از سرعت سیال در طبقه ضربه ای کمتر است.طراحی تیغه های مدرن :توربینهای مدرن ترکیبی از ضربه ای و عکس العملی هستند . توربینهای ضربه ای برای جبران ضعف بازده که ناشی از عکس العمل صفر یا جتی منفی است تا 20% از عکس العمل را در بیخ ریشه تیغه های متحرک بکار می گیرند . از طرف دیگر عکس العمل در بیخ توربینهای عکس العملی پایین آمده و تا حد 30 تا 40 درصد می رسد که باعث می شود تعداد مراحل مورد نیاز کاهش یافت و 50% عکس العمل را در نقطه میانی متحمل گردد . امروزه به طور دقیق 2 نوع طراحی به صورت زیر است.1- توربین دیسک و دیافراگم با استفاده از تیغه هایی با عکس العمل کم2- توربین درام – روتور با استفاده از تیغه های با عکس العمل زیادتیغه های تاب دار توربین فشار پایین :بره های عکس العملی به ویژه در طبقات نهایی بلند هستند و در آنها مقدار سرعت تیغه از پایه تا نوک با افزایش شعاع پره افزایش می یابد که این امر موجب تغییر شکل نمودار سرعت در طول پره می شود . از پایه تا نوک پره زوایه ورودی پره افزایش و زوایه خروجی پره کاهش می یابد و درجه عکس العمل از پایه تا نوک تغییر می کند . به طوری که شکل پره در پایه تا حدی مانند پره ضربه ای است و در نوک پره درجه عکس العمل به حداکثر می رسد که به چنین پره هایی پره تابدار گویند.بخار در مرحله های یک توربین LP بسرعت منبسط گشته و به سمت سرعت زیاد، اغلب سرعت مافوق صوت ، شتاب پیدا می کند . بخار در خروجی توربین می تواند تا حدود 10 درصد رطوبت داشته باشد . جریان بخار سپس شکل پیچده ای پیدا می کند و نحوه طراحی تیغه های توربین LP این موضوع را نشان می دهد . تیغه ها بلند هستند و پیچش زیادی دارند بطوریکه زوایای ورودی و خروجی در تمامی طول تیغه از خصوصیات یک جریان سه بعدی تبعیت می کنند.هنگامی که در اواخر دهه 1950 و اویل دهه 1960 واحدهای بزرگ طراحی شدند هیچگونه ابزار تحلیلی در دسترس نبود تا بطور مطمئنی طبیعت جریان بعدی را در سیلندرهای توربین LP پیش بینی کند . امروزه تست های عرضی روی این ماشین ها نشان دهنده وجود اجزاء شعاعی سرعت قابل ملاحظه ای در یک جریان به شدت واگرا می باشد . روش هایث آنالیز تمامی جریان که امروزه به خدمت گرفته شده اند محاسبه جزئیات حرکت سیال در اطراف هر تیغه را ممکن می سازند . این کار با روشهای محاسباتی مدرن صورت می گیرد و آنالیز حوزه جریان را در سیلندرهای توربین های مدل در کارخانجات سازنده و همچنین روی دستگاههای واقعی در حال سرویس بدست آمده پالایش و سپس ارزیابی می گردند . دقت پیش بینی جریان امروزه خیلی بالاست و طراحی تیغه ها به منظور دستیابی به شکل جریان سه بعدی مورد نظر ممکن شده است . تیغه های مدرن آخرین مرحله بطور قابل ملاحظه ای پیچش داده می شوند زیرا جریان در پیچیده ترین حالت خود در صفحه خروجی است . سطح مقطع تیغه در نوک آن تنها حدود 15 درصد سطح مقطع آن در بیخ آن است ( شکل 12-1) .برای نشان دادن این مطلب در حال حاضر فرض می کنیم که آخرین مرحله بگونه ای طراحی شده که درجه عکس العمل کمی در قطر مبنا که نزدیک به دیسک روتر قرار دارد داشته باشد.اکنون اجازه دهید تا به طرف منطقه وسط تیغه متحرک یعنی به قطر متوسط مرحله به سمت بالا حرکت کنیم.بطور نمونه ، در تیغه های مدرن قطر نوک تقریباً دو برابر قطر مبناست به گونه ای که بطور متوسط فاصله تیغه ( یعنی فاصله محیطی بین دو تیغه مجاور ) تقریباً به اندازه 5/1 برابر فاصله تیغه در قطر مبناست . سرعت محیطی تیغه نیز 5/1 برابر بزرگتر از سرعت تیغه در قطر مبنا است . اگر مقطع تیغه متحرکی که در قطر متوسط استفاده می شود همانند آنچه که در قطر مبنا مورد استفاده قرار می گیرد انتخاب می شد عبور سیال از بین تیغه های متحرک ، بخاطر فاصله تیغه که افزایش یافته ، بطور غلطی انجام میب شد و در حالیکه اثر افزایش سرعت تیغه موجب تغییر جهت سرعت بخار نسبت به تیغه متحرک می گرید ، زوایه ورودی تیغه موجب تغییر جهت با جریان بخار ورودی نمی شد.علاوه بر آن ، بردار سرعت بخار هنگام ترک تیغه و در نتیجه کاهش بازده می گردید . با تغییر دادن شکل سطح مقطع تیغه متحرک می توان بر این مشکل غلبه کرد . زوایه خروجی را کاهش می دهند تا سطح مقطع عبور جریان را محدود کنند بطوریکه یک افت فشار در عرض تیغه های متحرک بوجود آید ، بخار از تیغه های متحرک با سرعتی بیشتر جدا شود ، سرعت زیاد محیطی را جبران نموده و با سرعتی محوری خارج گردد . این باعث می شود که افت فشار در عرض تیغه های ثابت کاهش یابد تا همین افت فشار در کل مرحله نگه داشته شود.

منبع
 
آخرین ویرایش توسط مدیر:

jalilianfar

عضو جدید
توربین [1]

توربین [1]

واژهٔ توربین برای اولین بار به وسیله ( Claude Burdin )۱۷۹۰-۱۸۷۳در سال ۱۸۲۸به وجود آمد که از لغت یونانی به معنی چرخنده یا سر گردان مشتق شده‌است. توربین موتوری چرخنده‌است که می‌تواند از یک سیال انرژی به‌دست آورد.واژهٔ توربین برای اولین بار به وسیله ( Claude Burdin )۱۷۹۰-۱۸۷۳ در سال ۱۸۲۸به وجود آمد که از لغت یونانی به معنی چرخنده یا سر گردان مشتق شده‌است. توربین موتوری چرخنده‌است که می‌تواند از یک سیال انرژی به‌دست آورد.
ساده‌ترین توربین‌ها یک بخش چرخنده و تعدادی پره دارند که به بخش اصلی متصل شده‌است سیال به پره‌ها برخورد می‌کند و بدین ترتیب از انرژی ناشی از متحرک بودن آن استفاده می‌کند به عنوان اولین توربین‌ها می‌توان آسیاب بادی و چرخاب را نام برد.
توربین‌های گاز، بخار و آب معمولاً پوشش محافظی در اطراف پره‌هایشان دارند که سیال را کنترل می‌کنند پوشش‌ها و پره‌ها می‌توانند اشکال هندسی مختلفی داشته باشند که هر کدام برای نوع سیال و بازده متفاوت است.
کمپرسور یا پمپ دستگاهی مشابه توربین است ولی با عملکرد بر عکس به طوری که این دستگاه انرژی را می‌گیرد و باعث حرکت یک سیال می‌شود.
انواع توربین
توربین‌های بخار:
برای تولید برق در نیروگاه‌های حرارتی که از ذغال سنگ، نفت و انرژی هسته‌ای استفاده می‌کنند به کار برده می‌شوند روزی از آنها برای هدایت وسایل نقلیه مانند کشتی استفاده می‌شد.
توربین‌های گازی:
این توربین‌ها معمولاً دارای یک ورودی، فن، کمپرسور، محفظه متراکم کننده و یک نازل است.
توربین‌های ترانسونیک:
جریان گاز در اکثر توربین‌ها همواره سرعتی زیر صفر دارد در این نوع توربین‌ها سرعت گاز هنگام خروج بالاتر از صفر است. این توربین‌ها در فشار بالاتری کار می‌کند ولی معمولاً بازده کمی دارند و خیلی هم مرسوم نیستند.
توربین‌های کنترا رتاتینگ:
دو توربین که یکی بالا دیگری پایین در جهت مخالف هم می‌چرخند این سیستم پیچیدگی‌هایی دارد که تولید آن را کاهش می‌دهد.
توربین‌های سرامیک:
توربین‌های با فشار بالا که از آلیاژ نیکل و فولاد ساخته شده‌اند معمولا دارای سیستم‌های خنک کننده پیچیده هستند اخیرا پره‌های سرامیکی روی توربین‌های گازی امتحان شده‌است.
ما در این مقاله به تفصیل توربین بخار و توربین گازی را توضیح می دهیم .
توربین های بخار
توربین بخار یک دستگاه مکانیکی است که انرژی گرمائی از بخار تحت فشار دریافت و آنرا به کار مکانیکی مفید تبدیل می‌کند. توربین بخار تقریباً جانشین موتور بخار پیستونی، که توسط توماس نیوکامن Thomas New Comen اختراع شد و توسط جیمز وات James watt توسعه یافت، شد. توربین بخار برای به حرکت درآوردن ژنراتور برق بسیار مناسب است و 86 درصد برق در جهان از طریق استفاده از این توربین تولید می‌شود. این توربین نوعی موتور حرارتی است که بیشتر راندمان ترمودینامیکی را از استفاده چند مرحله‌ای انبساط بخار آب دریافت می‌کند.
یکی از بهترین گزینه ها برای ساخت نیروگاههای حرارتی استفاده از توربین های بخار است چون این توربین ها عمر طولانی دارند و با توجه به اینکه در حرارت و فشار کمتری در مقایسه با توربین های گازی کار می کنند عمر طولانی تری هم دارند و نیز کمتر به تعمیرات اساسی نیاز دارند . از این رو می توان از آنها بعنوان توربین های برای تولید برق پایه کمک گرفت .
اما عیب عمده آنها این است که اولا دستگاههای پر حجم و بزرگی هستند جای زیادی را اشغال می کنند و ثانیا دیر وارد مدار می شوند و مدتی برای پیش گرم کردن =WARM UP آنها باید زمان صرف شود . از همه اینها گذشته توربین های بخاز نیاز به نصب دیگ های بخار =BOILER دارند که این نیز خودش نیاز به تاسیسات و فضای فراوان دارد . ونیز تاسیساتی برای تصفیه آب مورد نیاز برای تغذیه دیگ بخار که همه آنها مستلزم صرف هزینه و فضای لازم است . اما با این حال استفاده از توربین های بخار یک سرمایه گذاری دائمی و با ارزش است

تاریخچه
اولین دستگاهی را که ممکن است آنرا به عنوان توربین بخار به حساب آورد چیزی که بهتر از یک اسباب به نظر می‌رسید بود که توسط قهرمان اسکندریه در مصر رومی ساخته شد. اولین توربین بخار واقعی در سال 1551 در مصر عثمانی توسط تقی‌الدین اختراع شد. در سال 1629 توربین دیگری به وسیله یک فرد ایتالیایی بنامGiovanni Branca ساخته شد. بهرحال این توربین‌های بخار اولیه با مدل جدید بسیار متفاوت بودند. مدل جدید توربین در سال 1884 توسط یک مهندس انگلیسی به نام چارلز پارلز Charles Parsons اختراع شد. اولین مدل توربین او به یک دینام وصل شد که 5/7 کیلووات برق تولید کرد. اختراع وی به ثبت رسید و سپس توربین وی توسط یک فرد آمریکایی بنام جرج وستینگهاس توسعه یافت.
تعدادی توربین متفاوت ساخته شدند و به خوبی با بخار عمل کردند. توربین de laval turbine که توسط Gustaf de laval اختراع شد راندمان بخار را افزایش داد. این توربین ساده‌تر، ارزان‌تر بود و می‌توانست با هرگونه فشار بخار عمل کند.
انواع توربین
توربین‌های بخار با ظرفیت‌های مختلف ساخته می‌شدند. از توربین‌های باظرفیت یک اسب بخار (75/0 کیلووات) که برای پمپ‌ها و کمپرسورها و غیره تا توربین‌های دو میلیون اسب بخار (000/500/1 کیلووات) که برای تولید برق مورد استفاده قرار می‌گیرند. توربین‌های بخار از نظر عملکرد طبقه‌بندی می‌شوند.
توربین‌های ایمپالس (Impulse)
یک توربین ایمپالس چند نازل ثابت دارد که بخار را به ژیگلورهای با سرعت بالا هدایت می‌کنند. این ژیگلورها حاوی انرژی جنبشی قابل توجه هستند که از طریق تیغه‌های رتور که شبیه بیلچه‌ می‌باشند این انرژی را به شفت انتقال می‌دهند، در توربین‌های ایمپالس انبساط بخار فقط در نازل‌ها اتفاق می‌افتد.
انواع توربین‌های ایمپالس به قرار زیر هستند:
توربین بانکی - Banki Turbine
توربین کرارد - Girard Turbine
توربین پلتون - pelton Turbine
توربین تورگو - Turgo Turbine
توربین‌های ری اکشن (Reaction)
در توربین ری‌اکشن تیغه‌های رتور به حالتی قرار می‌گیرند که باعث همگرائی نازل‌ها می‌شوند. در این نوع توربین از نیروی ری‌اکشن (عکس‌العمل) استفاده می‌شود.
انواع توربین‌های ری‌اکشن به قرار زیر هستند:
توربین فورنیرون - Fourneyron Turbine
توربین فرانسیس - Francis Turbine
توربین تامسون - Thompson Turbine
توربین کاپلان - Kaplan Turbine
توربین پروپیلر - Propeller Turbine
انواع توربین‌های بخار شامل: توربین های متراکم کننده،‌ غیر متراکم کننده، با حرارت مجدد، کششی و القائی است. توربین‌های غیر متراکم اغلب برای کاربردهای بخار فرآیند استفاده می‌شوند. فشار تخلیه گاز به وسیله شیر تنظیم کننده متناسب با نیاز فشار بخار کنترل می‌شود. این توربین‌ها معمولاً در پالایشگاهها واحدهای حرارتی، کارخانه‌های کاغذسازی و دستگاههای آب شیرین کن و در مکان‌هائی که مقادیر زیادی بخار کم فشار بایستی در دسترس وجود داشته باشد یافت می‌شود.
- توربین‌های متراکم کننده اغلب در نیروگاهها مخصوصاً نیروگاههای هسته‌ای وجود دارند. این توربین‌ها بخار را در حالت بسیار متراکم تخلیه می‌کنند. این نوع توربین‌ها آب در حال تراکم در آخرین توربین به مواد گران‌تر احتیاج دارد، در غیر اینصورت خوردگی تیغه‌های توربین‌ها مسائل بزرگی به وجود می‌آورد. این مواد بهرحال به دلائل مختلف در نیروگاههای هسته‌ای بسیار معمول است.
- توربین‌های با حرارت مجدد نیز تقریباً به طور انحصار در نیروگاهها مورد استفاده قرار می‌گیرند. در این نوع توربین جریان بخار از بخش فشار زیاد در داخل توربین خارج می‌شود و برای افزایش حرارت آن به بویلر (دیگ بخار) برمی‌گردد. این بخار سپس به بخش فشار متوسط توربین برمی‌گردد و در آنجا منبسط می‌شود.
- توربیـن‌هـای اکسترکتینگ (Extracting Turbines) در بسیـــاری از مــوارد مخصوصــاً در بخش‌های تولیدی مانند صنعت کاغذسازی که به بخار با فشار و حرارت معین نیاز دارند بسیار معمول است. در این نوع توربین، بخار از یک نقطه توربین با درجه حرارت و فشار مطلوب دریافت می‌شود و یا به سیستم گرم‌کننده آب تغذیه بویلر ارسال می‌شود. افزایش گرمای سیستم گرم کننده آب تغذیه بویلر باعث بهبود راندمان توربین خواهد شد.
- توربین‌های کروزینگ (Cruising Turbines)
این توربین‌ها در دهه‌های 1950 و 1960 در نیروی دریائی آمریکا استفاده شد. توربین‌های کروزینگ برای سرعت‌های کم و متوسط طراحی شد.
- توربین‌های معکوس (Reversing Turbines) دارای یک یا چند سری تیغه هستند که در جهت عکس محور اصلی قرار می‌گیرند. ترتیب دریچه‌ها به صورتی است که باعث می‌شود خط اصلی بخار به طرف تیغه‌های جلو بسته می‌شود و به طرف تیغه‌های معکوس باز می‌گردد. تیغه‌های معکوس روی همان شفت تیغه‌های جلوئی نصب شده‌اند. توربین‌های بخار معکوس زمانی در صنعت دریائی مورد استفاده قرار می‌گرفت.
توربین های گازی
از زمان تولد توربینهای گازی امروزی در مقایسه با سایر تجهیزات تولید قدرت , زمان زیادی نمی گذرد . با این وجود امروزه این تجهیزات به عنوان سامانه های مهمی در امر تولید قدرت مکانیکی مطرح می باشند . از تولید انرژی برق گرفته تا پرواز هواپیماهای مافوق صوت همگی مرهون استفاده از این وسیله سودمند می باشند . ظهور توربینهای گازی باعث پیشرفت زیادی در رشته های مهندسی مکانیک , متالورژی و سایر علوم مربوطه گشته است . توربین های گازی دارای شرایط کاری سخت می باشند و قطعاتی نظیر پره های توربین باید در درجه حرارت های بالا استحکام مناسبی داشته باشند.همچنین به دلیل اتمسفرشدیدا اکسیدکننده و خورنده توربین ها، قطعات مختلف توربین بویژه پره ها باید مقاومت بالایی در برابر خوردگی داغ و اکسیداسیون داشته باشند. تاکنون آلیاژهای پایه نیکل و پایه کبالت بهترین آلیاژها برای ساخت قطعات توربین بوده اند اما حتی با بهینه کردن ترکیب شیمیایی سوپر آلیاژها امکان دستیابی به کلیه خواص مطلوب فوق وجود ندارد لذا برای مقاوم سازی این آلیاژها در برابر خوردگی داغ، اکسیداسیون و سایش، پوشش هایی در سطح آنها صورت می گیرد . یک نوع از پوشش های کار آمد برای این منظور پوشش های سد حرارتی (Thermal Barrier Coatings) هستند که به اختصار پوشش های TBC نامیده می شوند.
اغلب پوشش های TBC بر پایه زیرکونیا ( Zro2 ) می باشند که با افزودن ترکیباتی مثل ایتر یا (Y2o3 ) پایدار می گردند. Zro2 دارای هدایت حرارتی کم و ضریب انبساط حرارتی بالا می باشد و افزودن Y2o3 به آن موجب ایجاد مقاومت بیشتر در برابر شرایط سیکل حرارتی می گردد. با بکارگیری این پوشش ها و با استفاده از خاصیت هدایت حرارتی کم آنها راندمان توربین های گازی افزایش می یابد زیرا با حضور این پوششها دمای فلز پایه تا 170˚C کاهش پیدا میکند ودرنتیجه امکان افزایش دمای کاری توربین فراهم میشود.
در حال حاضر تحقیقات برای توسعه اینگونه پوشش ها و همچنین بکارگیری نوع دیگری از پوشش های فلزی که بعنوان لایه bond coat بین فلز پایه و پوشش سرامیکی قرار می گیرند، درحال گسترش می باشد.
لایه bond coat معمولا یک پوشش فلزی است که چسبندگی پوشش سرامیکی را به فلز پایه افزایش می دهد. درحال حاضر برروی سوپر آلیاژها ابتدا یک لایه از پوشش فلزی bond coat به ضخامت 80-150μm داده شده است و بر روی آن پوشش سد حرارتی با ضخامتی در حدود 300μm تا 2 mmبکار گرفته می شود.
برنامه (Industrrial Power Generation) IPG یک همکاری مشترک از سازندگان توربین گاز، دانشگاهها، شرکتهای گاز طبیعی، تولید کنندگان انرژی الکتریکی، آزمایشگاههای ملی و استفاده کنندگان صنعتی می باشد. همکاری فوق که شامل طیف وسیعی از مشارکت کنندگان مختلف است منابع و امکانات فنی- اقتصادی- تحقیقاتی مناسبی را برای ایجاد یک تحول اساسی در فن آوری توربین گاز فراهم می آورد. یکی از قدمهای اولیه این برنامه تولید پوشش سد حرارتی TBCبرای توربینهای گاز بوده است.
به همین خاطر امروزه به تکنولوژی توربینهای گازی تکنولوژی مادر گفته می شود و کشوری که بتواند توربینهای گازی را طراحی کند و بسازد هر چیز دیگری را هم می تواند تولید کند.
اجزای توربینهای گازی
به طور کلی کلیه توربینهای گازی از سه قسمت تشکیل می شوند:
.1.کمپرسور 2.محفظه احتراق 3.توربین
که بنا به کاربرد قسمتهای دیگری نیز برای افزایش راندمان و کارایی به آنها اضافه می شود . به عنوان مثال در برخی از موتورهای هواپیماها قبل از کمپرسور از دیفیوزر و بعد از توربین از نازل استفاده می شود . که دراین رابطه بعدها مفصلاً بحث خواهد گردید
سیکل توربینهای گازی:
سیکل ترمودینامیکی توربینهای گازی سیکل استاندارد هوایی یا برایتون می باشد که در حالت ایده ال مطابق شکل زیر شامل دو فرایند ایزنتروپیک در کمپرسور و توربین و دو فرایند ایزو بار در محفظه احتراق و دفع گازها می باشد.
سیکلهای توربینهای گازی در دونوع باز و بسته می باشند . در سیکل باز ( شکل فوق) گازهای خروجی از توربین به درون اتمسفر تخلیه می شوند که این سیکل بیشتر در موتورهای هواپیما مورد استفاده قرار می گیرد . در نوع بسته که عمدتاً در نیرو گاههای برق مورد استفاده قرار می گیرد گازهای خروجی از توربین ( مرحله 4) از درون بخش دفع گرما (cooler ) عبور کرده و بعد از خنک شدن مجددا وارد کمپرسور گردیده و سیکل تکرار می شود.
همانطورکه قبلا بیان گردید توربینهای گازی از نظر کاربردی به دو گروه صنعتی و هوایی تقسیم می شوند که نوع اول در صنعت و نوع دوم در هوانوردی مورد استفاده قرار می گیریند . که ذیلا در ارتباط با هرکدام از آنها بحث خواهیم نمود.
توربینهای گازی صنعتی:
منظور از توربینهای گازی صنعتی اشاره به کاربرد آنها غیر از بخش هوانوردی می باشد . در شکل زیر شمایی از یک واحد تولید نیروی برق توسط توربین گاز , نشان داده شده است.
توربینهای گازی که در صنعت برق مورد استفاده قرار می گیرند دارای ظرفیتهای متفاوتی می باشند که شکل قبل نوعی از این توربینها با ظرفیت 400 مگاوات را نشان می دهد.
توربینهای گازی هوایی یا موتورهای جت:
همانطور که گفته شد سیکل توربینهای گازی موتورهای هواپیما شبیه به توربینهای گازی صنعتی می باشد بجز اینکه قبل از ورود هوا به کمپرسور از یک دیفیوزر و بعداز توربین از یک نازی برای بالا بردن سرعت گازهای خروجی و حرکت هواپیما به سمت جلو استفاده می کنند . این گازهای پرسرعت بر هوای خارج از موتور نیرویی وارد می کنند که طبق قانون سوم نیوتن نیروی عکس العمل آن سبب حرکت هواپیما به سمت جلو می شود . شایان ذکر است که نازل در هواپیماهای جت از نوع متغیر
می باشد. یعنی دهانه آن با توجه به دبی گذرجرمی گازهای خروجی قابل تغییرو تنظیم است.
موتورهای هواپیما انواع مختلفی دارند که به دو سته کلی تقسیم می شوند:
1) موتورهای پیستونی:
که از نظر کاری شبیه به موتور خودروها می باشند.
2 )موتورهای توربینی:
این موتورها به سه دسته کلی توربوجت, توربوفن و توربوپراپ تقسیم بندی می شوند
توربوجتها اولین موتورهای جت می باشند که امروزه به دلیل مسائلی مثل صدای زیاد و آلودگی محیط زیست بجز در موارد خاص استفاده ای از انها نمی شود . توربوفنها نوع پیشرفته موتورهای توربوجت هستند . به این صورت که ردیف اول کمپرسور در این موتورها به عنوان فن عمل کرده و مقداری از هوای ورودی به موتور را از اطراف موتور by pass کرده که این عمل علاوه بر افزایش نیروی جلوبرندگی باعث کاهش صدا,آلودگی محیطی و ... می شود .
در موتورهای توربوفن با اتصال یک ملخ به گیربکس و سپس به کمپرسور , نیروی جلوبرندگی ایجاد می شود . در این حالت سعی می شود که بیشترین انرژی جنبشی گازها صرف چرخاندن توربین و از آنجا کمپرسور و در نتیجه ملخ شود . وجود گیربکس به این خاطر است که سرعت دورانی ملخ از حد معینی تجاوز نکند . یعنی باید سرعت انتهای ملخ از عدد ماخ کوچکتر باشد . زیرا سرعتی بیش از این سبب ایجاد ارتعاشات شدید و در نتیجه شکستگی ملخ می شود.
موتورهای توربوشفت نیز نوعی موتور توربوپراپ می باشند که از آنها جهت به حرکت درآوردن هلیکوپترها استفاده می شود .بطور کلی موتورهای توربوپراپ بدلیل اینکه در ارتفاع پروازی کم از قدرت زیادی برخوردار هستند از آنها در هواپیماهای ترابری استفاده می شود مثل (سی 130)
توربین های گازی پیشرفته امروزی
توربین های گازی جدید ی که برای موارد تولید انرژی الکتریکی طراحی شده و بکار می روند ، در حالت کلی از نظر اندازه ، مواد به کاررفته در اجزای مختلف و فناوری ، تغییرات اساسی یافته اند . مشخصات کلی به قرار زیر است :
1) توان تولید برق درحدود 150 مگاوات در 60 هرتز یا 200 مگاوات در 50 هرتز
2) دمای گاز ورودی توربین در حدود Cº1260 و نسبت فشار کمپرسور 1: 16؛
3) کارایی کل واحد با گاز طبیعی حدود 35 درصد و در صورت استفاده از سیکل ترکیبی ،47 درصد.
مشخصات کلی توربین گازی سری قبلی این مدل ، 100 مگاوات ، Cº 1100و
33 درصد است .چند نمونه از توربین های گازی پیشرفته ای که سازندگان توربین گازی در کشورهای مختلف ارائه داده اند به قرارزیر است :
مدل GT13E2 ساخت شرکت ABB درسال 1995 در هلند به بهره برداری رسید . توان خالص تولید ی این توربین در 50 هرتز با سوخت گاز طبیعی برابر 164 مگاوات در کارایی 7/35 درصد و با سوخت مایع برابر 161 مگاوات در کارایی 4/35 درصد است . نسبت فشار کمپرسور این واحد برابر 15:1 است . در این نمونه 72 مشعل در محیط محفظه ی احتراق قرار گرفته است که این نوع مشعل ، ظرفیت تولید گازNOx بسیار کمتری دارد . مقدار NOx تولید شده با سوخت گاز ، کمتر از PPm 25 و با سوخت مایع و تزریق آب ، کمتراز PPm 42 است . دمای ورودی گاز به توربین ºC 1100 و خروجی ºC 525 است .
این توبین 5 مرحله پره دارد که در دو ردیف اول روتور ، و سه ردیف ثابت ، که در آنها سیستم خنک کننده نیز تعبیه شده است . سیستم خنک کننده ، در ریشه پره های دو ردیف آخرنیز نصب شده است. جنرال الکتریک و شرکت اروپایی توربین گازی به طور مشترک ، مدل F 9001 MS را با فرکانس 50 هرتز ارائه داده اند که در نیرو گاه جنویلرس فرانسه ازآن استفاده می شود .
توان تولید ی این واحد 215 مگاوات در کارایی 35 درصد است . توان تولید ی مدل جدید تری ازاین سری به 226 مگاوات افزایش یافته است . کمپرسور این توربین گازی دارای 18 مرحله با نسبت فشار 20:1 و محفظه ی احتراق مجهز به 18 مشعل با سیستم کنترل NOx است .
توربین ، از نوع سه مرحله ای است که در دوردیف اول ، خنک کاری انجام می شود . دمای ورودی توربین ºC 1288 است . از مدل 60 هرتز که FA 7001 MS نامیده
می شود ، در نیروگاه نیو مارتین فلوریدا بهره برداری می شود . توان تولیدی این توربین 149 مگاوات با NOx کمتر از PPm 25 با سوخت گاز طبیعی است . کارایی این واحد با سیکل ترکیبی 47 درصد است . این واحد ها ی بزرگ با کارایی بالا که برای زمانهای حداکثر بار طراحی شده است ، قابلیت مانور بالایی دارند .
توربین گازی جنویلوس از لحظه آغاز راه اندازی تا رسیدن به شرایط تولید با ظرفیت کافی فقط به 12 دقیقه زمان نیاز دارد و چون هزینه تولید این واحد پایین است ، انتظار
می رود که از آن در سیکل های ترکیبی استفاده شود. در این صورت ، تولید الکتریسیته برای بار پایه صورت می گیرد و تعداد دفعات راه اندازی و از کاراندازی آن کاهش خواهد یافت . با تغییر روش استفاده و با بهره برداری بهینه ، ویژگیهای تعمیراتی نیز تغییر خواهد کرد که در این صورت باید به این موارد نیز در طراحی توجه شود .
لازم است ذکر شود که در صورت استفاده در بار پایه ، خروج واحد از شبکه بدون برنامه ریزی قبلی ، ضررمالی قابل توجهی را به دنبال خواهد داشت

منبع
 
آخرین ویرایش توسط مدیر:

jalilianfar

عضو جدید
توربیـــــن [2]

توربیـــــن [2]

توربیـــــن یک سیستم مکـــانیکی اســـت که انــرژی پتانســــیل آب را به انـــرژی مکــانیکی تبدیـــل می کند. مقــــدار انـــرژی تولیـــد شـــده به پارامترهایی از قبیل هـــد، دبی و مقدار تلفــات نشتی بستگی دارد.
تجهیزات مکانیکی نیروگاه
توربیـــــن یک سیستم مکـــانیکی اســـت که انــرژی پتانســــیل آب را به انـــرژی مکــانیکی تبدیـــل می کند. مقــــدار انـــرژی تولیـــد شـــده به پارامترهایی از قبیل هـــد، دبی و مقدار تلفــات نشتی بستگی دارد.
تجهیزات مکانیکی نیروگاه
توربین آبی (Hydraulic Turbine)
توربیـــــن یک سیستم مکـــانیکی اســـت که انــرژی پتانســــیل آب را به انـــرژی مکــانیکی تبدیـــل می کند. مقــــدار انـــرژی تولیـــد شـــده به پارامترهایی از قبیل هـــد، دبی و مقدار تلفــات نشتی بستگی دارد.
توربینهای آبی، معمولا" به 3 دسته کلی پلتون، فرانسیس و کاپلان تقسیم می‌گردند که در هر نیروگاه متناسب با هد و دبی آب، توربین متناسب با آن، انتخاب می‌گردد.در بسیاری از نیروگاههای بزرگ و متوسط ایران از توربین نوع فرانسیس عمودی استفاده شده است.
بطور مثال، تــــــوربین‎های نیروگاه کـــارون یک،دز،کارون 3 و کرخه،از نوع فرانســـــیس، عکس‎العملی و با محــــور عمــودی می‎باشـــــند کـــه کامــلاً در آب غـــوطه‎ور هستند. آب باعــــــث ایجــــاد کوپل چرخشی در توربـــــین می‎شــــــود. هر توربــــین شامل اجـــزاء زیر است : محفظــــه حلزونــــــی(Spiral Case) ، حلقــــه ثابت(Stay ring) ، پره‎هــــــای تنظــــیم‎کننده جریان آب(Wicket gate) ، رانـــر (Runner)و درافت تیوب(Draft tube).
آب وارد محفظــه حلزونی شــــده و پس از عبور از پره‎های ثــابت و پره‎هـــــای ویکت گیت، با برخورد به رانـــــر، آن را به چرخش درآورده و سپس از طــریق درافــت تیوب و تونـــل پایـــاب (Tail race)خارج می‎شـــود. بمنظـــور جدا کردن درافت تیـــوب از آب پایـــاب، در مواقــــع لازم (برای تخلــــیه آب درافت تیوب)،در بعضی از طرحها، از استاپ لاگ (دریچه) (Stop-Log) در انتهای درفت تیوپ استفاده می‌شود. دبی آب توربین توسط باز و بستــه شدن پره‎های ویکت گیت‎ کنترل می‎شود. گاورنــــر(Governor) از این طـــریق(با تغییر باز شدگی دریچه‌های ویکت گیت)، قــــدرت خروجی و ســـرعت توربیـن را کنترل می‎کنـــد. در بالا دست محفظه حلزونی، شیرپروانه‎ای(Butterfly Valve) قـــرار دارد کــــه در مــواقع عادی و اضطـراری برای توقـف جــریان آب از آن اســتفاده می‎گــردد.باید توجه کرد که شیرپروانه‌ای برای کنترل دبی آب استفاده نمی‌شود و همواره یا کاملا" باز است و یا کاملا" بسته.
بطور مثال نیروگاه کارون یــک، دارای چــــهار واحـــد با محـــور عمــودی است. هــــر دو توربیـــن دارای یــک ورودی و پنســتاک هستــند که هر پنستاک به دو قســــمت تقســیم شـده و هر قســمت آن به یک محفظـــه حلــــــزونی متصل شـــده است. با هــد خالص 160.4 m و دبـــی 171 m3/sce ، قــــــــدرت واحد ، حدود 254MW و راندمان آن حـــدود 94.5% می‌باشد.
شیر پروانه‌ای (Butterfly Valve)
شـــیر پروانـــه‎ای معمولا" در بالادســت محفظـه حلزونــــی (spiral case) قـــــرار دارد و بـــرای جـــداسازی تــــوربین از مسیر بالادســـت به‌کار می‌رود. در ضمن به منظـــور قطــــع جریــــان آب در مواقع اضطــراری نیز از شیرپروانه‌ای استفاده می‌شود.
شیر پروانه‎ای شامل قسمتهای زیر می‌باشد :
- بدنه شیر (Valve Body)
- مکانیزم هیدرولیکی (Hydraulic operating mechanism)
- آب‌‎بند(Water sealing)
- سیستم کنترل
- مجموعه بای‌پس (By pass valves)
- اتصال پائین‎دست (Downstream transition)
شـــیر پروانــــه‌ای معمولا" توســــط وزنــه بسته می‌شود ولی با عملکرد دو ســــرووموتور هیدرولیکی باز مـی‎شود. یک سیســـتم هیدرولیکی که شـــامل مخزن تخلیـه روغـن(sump)، دو دستــگاه پمـــــپ روغــــن و مخـزن هــوا –روغــــن است برای شیرپروانه‌ای در نظــرگرفته می‌شود تا روغــــن با فشار مورد نیاز (مثلا" فشارbar 40) را برای سروومـــــوتورها فراهم کند. شیر‌پروانه‎ای توسط یک قطعه واسطه (expansion joint) به محفظــــه حلزونـــی (Spiral-case) متصل شده و توسط نگهدارنــــده‎هایی که در مــواقع بسته شدن به آن اجــــازه جابجــــایی طولی می‎دهنـــد مهـــار شده است.
شــــیر پروانــــه‎ای دارای یک مســـیر کنـارگذر (بای‌پاس) است. قبل از بازشـــــدن شــــیر پروانه‎ای، این شـــیر بای پـــاس محفظه حلزونی را پرآب می‎کند.
برای راه‎اندازی شیر پروانه‎ای مراحل زیر به‌صورت متوالی پیش‎بینی شده‌اند:
- باز شدن مسیر بای پاس
- باز شدن شیر پروانه‎ای
- بسته شدن مسیر بای پاس
شــــیر پروانه‎ای توسط ســـــروموتورها باز مـــی‎شود. یک پمــپ روغــــن حداقل فشـــار لازم در مخزن هــوا-روغــــن را تأمین می‎نماید. اگر پمـــپ اصلی دچــــار اشکـــال شده و متوقف شود، پمپ دوم بصورت خودکار روشـــن می‎شود.
توجه داشته باشید که شیرهای پروانه‌ای یا کاملا" باز و یا کاملا" بسته هستند و حالت میانه ندارند؛ به عبارت دیگر از شیرهای پروانه‌ای برای کنترل جریان آب استفاده نمی‌شود.
گاورنر هیدرولیکی(Hydraulic governor)
هر واحد نیروگاهی برای کنترل سرعت و قدرت توربین به یک دستگاه گاورنر (Governor) برای تنظیم جریان آب ورودی به توربین، مجهز می‌گردد.
گاورنرها به 3 دسته تقسیم می‌شوند:
- گاورنر مکانیکی
- گاورنر الکترومکانیکی
- گاورنر الکترونیکی
در حال حاضر فقط از گاورنر الکترونیکی در نیروگاههای جدید استفاده می‌شود و گاورنرهای مکانیکی و الکترومکانیکی را فقط در نیروگاههای قدیمی می‌توان پیدا کرد.
گاورنرهای جدید دارای دو قسمت الکترونیکی و هیدرولیکی می‎باشند.
1- قسمت الکترونیکی گاورنر
یک کنترل‎کننده الکترونیکی حلقه بسته (close loop) ، مجهز به PLC ، به‌صورت کاملا” دوتایی (Full redundant)، کنترل سیستم را بر عهده می‌گیرد.
سیگنال‎های ورودی این کنترل‎کننده معمولا" عبارتند از:
- سیگنال آنالوگ سرعت توربین، از خروجی سنسورهای سرعت توربین (mA20-4)
- سیگنال آنالوگ نشان‎دهنده موقعیت ویکت گیت‌های توربین(mA20-4)
- سیگنال آنالوگ نشان‎دهنده توان خروجی ژنراتور (-4mA20)
بر اســــاس سیگنـــــال‎های ورودی فــوق و پــردازش آن‌ها در کنتـرل‌کننده PLC، سیگنال خروجــی گـــاورنر الکتـــرونیکی (mA20-4) به شـــیر راهنمـــا(Pilot valve) اعمـــال شـــده و با عمــلکرد این شیـر، فشـــار و دبــی لازم روغـــن برای حرکــــت سـرووموتور و دریچه‎هـــای هـــادی توربیـــن(wicket gates) از طریـق شیـــر کنتـــرل اصـــلی(main valve) گاورنر فراهم می‎گردد.
کنتـــرل‎کننده فــوق معمولا" به صـورت دوتــایی بـــه عنــوان گاورنــر اصلی و گاورنر پشتیبان در تابلوی کنترل گاورنر قرار می‌گیرند.
در صـــورت بروز اشکال در گاورنر اصلی(main) ، کنترل سیستم به صورت خودکار، به گاورنر پشتیبان (backup) منتقل می‎شود.
سیستم کنترل گاورنر دارای سه حالت عملکرد به شرح زیر است:
- حـــالت کنتــــرل ســـرعت با کنترل‎کننده PID (speed control)
- حالت کنترل مقدار بازشدگی دریچه‎های هادی(wicket gate) توربین با کنترل‎کننده تناسبی (‍P)(opening control)
- حالت کنترل توان خروجی ژنراتور با کنترل‎کننده PID (Power control)
2- قسمت هیدرولیکی گاورنر
قســـمت هیدرولیکی گاورنر شامل تجهیزات زیر می‎باشد:
- عمــل‎کننده‎هـــای الکتروهـــیدرولیکی برای تبدیل سیگنال‎های الکتریکی به مقـــادیر مکــانیکی متناظر
- تقویت‎کننده هیدرولیکی
- واحد تأمین فشار روغن
از این واحـــد به منظـــور تأمیـــن فشـــار روغــــن بـــرای عمــــلکرد سرومــــوتورهای تـــوربین و نهایتا” باز و بسته شدن ویکت گیت‌های توربین استفاده می‎شود.
سیستم روغـن گـاورنر شامل مخــزن روغن، تانک فشار روغن/هوا(Air Oil Vessel) ، دو دستگاه پمـپ روغـــن گـــاورنر، شیرهای سولونوئیدی، شیر هیدرولیکی، سیستم خنک‎کن روغن (شامل دو دستگاه پمپ، کولر و ***** دوتایی مربوطه)، تجهیزات کنترل و اندازه‎گیری، لوله‎کشی و غیره می‎باشد.برق سیســـتم کنتــــرل گـــاورنر از دو فیـــدر مجــزا،از سیستم DC نیروگاه تأمین می‎شود.

منبع
 
آخرین ویرایش توسط مدیر:
بالا