صرفه جويي در مصرف انرژي در صنايع سيمان

zeinab68

عضو جدید
کاربر ممتاز
مقدمه:

حفاظت از منابع انرژي يک امر ضروري است که همه ي ما بايد به سمت آن برويم.اين حرکت باعث مي شود تا بر مشکل بحران انرژي دنيا چيره شويم.به طور خاص ،کشورهاي در حال توسعه علاقه مند به افزايش اطلاعات خود در زمينه ي افزايش راندمان توليد انرژي و مصرف انرژي هستند.به هر حال،عمدتاً تنها راه کار در زمينه ي اين اطلاعات از استفاده ي خردمندانه از انرژي موجود سرچشمه مي گيرد .بنابراين،اطلاعات در زمينه ي تکنولوژي هاي حفاظت از منابع انرژي و روش هاي مدرن کاهش مصرف انرژي بايد در اختيار دولت و مراکز مديريت انرژي در کشورهاي در حال توسعه قرار گيرد .اين سهولت دسترسي به اين اطلاعات بايد به گونه اي باشد که مهندسين و اپراتورهاي کارخانه هاي سيمان موجود در اين کشورها بتوانند به راحتي به اين اطلاعات دسترسي داشته باشند و به طور خاص اين مساله مهم است.که آنها به اطلاعات کاربردي در زمينه ي تکنولوژي هاي محافظت از منابع سوخت دست پيدا کنند.
در دسامبر سال 1983،سازمان توسعه ي صنعتي ملل متحد (UNIDO)جلسه هاي منطقه اي براي مصرف بهتر از منابع انرژي ترتيب داد.اين جلسه ها که با حضور يک گروه متخصص انجام مي شد.بر روي مصرف انرژي در صنايع کوچک و متوسط کشورهاي آسيايي بحث مي کردند .
در طي اين جلسات ،اين مسأله بيان شد که براي برخي از صنايع متمرکز ،صرفه جويي در مصرف انرژي مي تواند تا بيش از 10 درصد انجام شود .که اين کار با مديريت و بازرسي انرژي در زمينه ي فعاليت هاي خانگي انجام شود.همه ي اين تجربيات باعث شد تا سازمان توسعه ي صنعتي ملل متحد برنامه اي منطقه اي براي ترفيع و کاربردي تر کردن تکنولوژي هاي صرفه جويي در مصرف انرژي را تدوين کند.اين سازمان برنامه اي کامل براي صرفه جويي در مصرف انرژي در زير بخش ها و بخش هاي مختلف صنعتي دارد يکي از اين بخش هاي صنعتي که مصرف کننده ي عمده ي انرژي است صنعت سيمان است.و براي بهبود بازده کارهاي انجامي در اين صنعت ،روش هاي مدرن صرفه جويي در مصرف انرژي تدوين گشته است.
صنعت سيمان انرژي زيادي مصرف مي کند.اين صنعت همچنين به خاطر سهم بالاي انرژي در هزينه ي کلي توليد نيز مورد توجه است.(درصد بالايي از قيمت کلي يک تن سيمان مربوط به مصرف انرژي آن است.)
در صنعت سيمان،مقدار محسوسي انرژي را مي توان با جلوگيري از خروج انرژي از کوره ها ،اصلاح و تعديل وسايل در جهت بازيافت گرما در پروسه ي توليد،صرفه جويي کرد.(اصلاح و تعديل وسايل مي تواند بواسطه ي اضافه کردن بخش هاي پيش گرم و يا خنک کننده در توليد سيمان انجام داد.)همچنين استفاده از ضايعات صنعتي نيز مي تواند درصد مصرف انرژي را کاهش دهد.
اخيراً سازمان توسعه ي صنعتي ملل متحد(UNIDO)اين برنامه را بوسيله ي ساپورت مالي توسط دولت ژاپن در کشورهاي آسيايي در حال توسعه اجرا کرده است.اين برنامه کمک مي کند تا تکنولوژي هاي ابداعي حفاظت از منابع انرژي که در کشور ژاپن توسعه يافته است،در کشورهاي در حال توسعه ي ممتاز نيز توسعه يابد.
در اين برنامه ، بر اين مساله تاکيد مي کند که انتقال تکنولوژي هاي حفاظت از منابع انرژي بوسيله ي موارد زير ميسر مي گردد:
1)هدايت بررسي هاي انجامي بر روي مصرف انرژي و بازده در مراحل مختلف يک کارخانه.
2)تهيه ي کتاب هاي هندبوک در زمينه ي مديريت انرژي و تکنولوژي هاي حفاظت از منابع انرژي (که در اين هندبوک ها بوسيله ي بررسي هاي انجام شده در کارخانه ها تدوين مي شود.)
3)برگزاري سمينارهايي در زمينه ي بحث و ارائه ي مطالب کتاب هاي هند بوک تهيه شده (که اين سمينارها را مي توان در سطح مسئولان دولتي ،نمايندگان صنايع ،مديران کارخانه ها و مهندسين برگزار کرد.)
4)انتشار کتاب هاي هندبوک براي ديگر کشورهاي در حال توسعه (که اين کتاب ها مي تواند موجب استفاده و کاربرد بهتر بخش هاي صنعتي گردد).
تجربيات بدست آمده در هنگام اجراي اين برنامه راهنمايي مناسبي در جهت برنامه هاي آينده است.که بخش هاي ديگر صنعت را نيز درگير مي کند و نه تنها موجب پيشرفت در زمينه ي صنايع ديگر در يک مملکت مي شود بلکه موجب پيشرفت صنعت در ديگر کشورهاي در حال توسعه در ديگر مناطق مي شود.
NIDO اين برنامه را همراه با پروژه ي US/RAS/90/075(مصرف خردمندانه از منابع انرژي در صنعت پارچه و فولاد در مالزي واندونزي )و پروژه ي US/RAS/92/035(مصرف خردمندانه از منابع انرژي در صنعت کاغذ و صنعت شيشه در فيليپين و تايلند )شروع کرد.اين پروژه ها به وسيله ي پروژه ي US/RAS/93/039(مصرف خردمندانه از منابع انرژي در صنعت سراميک و صنعت سيمان در سريلانکا و بنگلادش )دنبال شد.
اين مقاله در مورد مصرف خردمندانه ي منابع انرژي در صنعت سيمان است که به وسيله ي UNIDOتهيه شده است.همچنين علاوه برUNIDO،مرکز حفاظت از منابع انرژي ژاپن (ECC)نيز در اين مقاله همکاري کرده است.در اين مقاله اطلاعات خوبي در زمينه ي تکنولوژي هاي صرفه جويي در زمينه ي صنعت سيمان مهيا گشته است .که اصول بحث بر اساس برنامه ي UNIDOقرار گرفته است.همچنين در اين مقاله مشاهدات انجام شده در زمينه ي حفاظت از انرژي که در پروژه ي US/RAS/93/039 انجام شده نيز آورده شده است.اين مقاله نه تنها براي دولت مردان يک کشور در حال توسعه مناسب است بلکه اين مقاله براي مهندسين و اپراتورهاي شاغل در کارخانجات سيمان کشورهاي در حال توسعه نيز مناسب مي باشد.و به وسيله ي آن اين افراد مي توانند بازده انرژي را در پروسه ي توليد سيمان بالا ببرند.
در پايان مقدمه ي اين مقاله از انستيتوهايي که در زمينه ي تهيه ي اين مقاله کمک کردند تشکر مي کنيم.اين انستيتو ها عبارتند از:
1)وزارت انرژي و منابع معدني بنگلادش
2)وزارت نيرو وانرژي سريلانکا
3)وزارت تجارت خارجي و صنعت ژاپن(MITI)
4)مرکز حفاظت از انرژي ژاپن(ECC)
 

zeinab68

عضو جدید
کاربر ممتاز
-فرايند توليد سيمان
در دوره ي مصريان و يونانيان ،آهک يا گچ پخته شده و آسياب شده براي توليد سيمان بنايي استفاده مي شده است.در قرن 19ام،سيمان پرتلند در انگلستان توليد شد.اين مقاله حفاظت از انرژي در توليد سيمان پرتلند را بررسي و پوشش مي دهد.
يک کارخانه ي توليد سيمان شامل فرآيندهاي زير است:
1)فرآيند مواد خام
2)فرايند پخت کلينکر
3)فرايند آسياب پاياني
فرايند مواد خام و فرايند پخت کلينکر هر کدام به دو فرايند خشک و فرايند تر طبقه بندي مي شوند.
در فرايند تر،مواد خام بجز گچ(Plaster)خردايش پيدا مي کنند.و به ابعاد با قطر 20 ميلي متر مي رسند. اين خردايش بوسيله ي يک آسياب انجام مي شود و مواد اوليه با سرعت مناسبي که بوسيله يک توزين کننده معين مي گردد ،مخلوط مي شوند .(همانگونه که در شکل 1نشان داده شده است.)

سپس آب به مواد خردايش يافته افزوده مي شوند. سپس مخلوط حاصله به وسيله ي يک آسياب نرم تر مي شوند .اين آسياب معمولاً 2تا 3/5متر قطر و 10تا 14 متر طول دارد.که دوغابي با 35تا 40 درصد آب در داخل آن آسياب مي شود.دوغاب حاصله سپس بداخل يک تانکر ذخيره سازي فرستاده مي شود.و در داخل اين تانکر که گنجايش آن چند صد تن است،به صورت يک دوغاب يکنواخت در مي آيد و از آنجا به داخل کوره ي پخت کلينکر هدايت مي شود.در فرايند تر،دوغاب به آساني مخلوط مي گردد اما مقدار زيادي انرژي براي بخار شدن آب همراه دوغاب صرف مي شود.
در فرايند خشک ،مواد خام خردايش يافته در داخل يک خشک کن استوانه اي دوار خشک مي شود .اين خشک کن استوانه اي دوار تقريباً 2مترقطر و 20متر طول دارد.و به وسيله ي يک وزن کن اتوماتيک،مواد اوليه به تانکر ذخيره سازي هدايت مي شوند.مخلوط بدست آمده سپس دوباره مخلوط گشته تا حالتي يکنواخت پيدا کند و به کوره ي دوار براي پخت کلينکر فرستاده مي شود.اين فرايند ها با توجه به خواص مواد اوليه،قيمت سوخت،موقعيت مکاني و...انتخاب مي شوند .براي فرايند تر،قيمت ساختمان کارخانه نسبتاً کمتر است . ومحصول با کيفيت به آساني توليد مي شود.به هرحال مساله ي کيفيت محصولات از يک سو و مساله ي صرفه جويي در مصرف انرژي از سوي ديگر وجود دارد .ولي مساله ي صرفه جويي در مصرف انرژي مساله ي مهمي است که مي تواند با پيشرفت تکنولوژي حل گردد.از اين رو استفاده از فرايند تر در آينده مفيد نمي باشد.
 

zeinab68

عضو جدید
کاربر ممتاز
2.خصوصيات مصرف انرژي در توليد سيمان

2.1مصرف انرژي

صنعت سيمان به همراه صنعت فولاد،کاغذ و پتروشيمي از جمله صنايع پر مصرف انرژي هستند.درصد قيمت سوخت در توليد سيمان پرتلند 20تا 30درصد است.اگر قيمت انرژي کاهش يابد،قيمت توليد کاهش يافته ،که نتيجه ي آن افزايش سود کارخانه مي باشد.

در شکل2 نسبت جزئي مصرف سوخت و مصرف برق در کل صنايع سيمان ژاپن است.
95درصد و يا بيش از 90درصد از مصرف سوخت در زمينه ي پخت کلينکر است.تقريباً 40درصد از نيروي برق نيز براي آسياب کردن پاياني مصرف مي شود.و کمتر از 30درصد از هر کدام از اين منابع انرژي (سوخت و نيروي برق)در زمينه ي فرآيندهي انجامي بر روي مواد اوليه و فرايند پخت کلينکر مصرف مي گردد.فرآيند آسياب کردن پاياني عمدتاً با استفاده از نيروي برق انجام مي شود که اين نيروي برق براي گردش آسياب ها استفاده مي شود .در فرآيند پخت کلينکر نيز برق مصرفي براي فن هاي خنک کننده مصرف مي شوند. فرآيند خردايش مواد اوليه حجم زيادي از انرژي را براي آسياب ها و دمنده ها مصرف مي کند.
فرايند توليد سيمان در ژاپن عمدتاً به وسيله ي کوره هاي SP،NSPانجام مي شود.و زغال سنگ نيز به عنوان سوخت مصرف مي شود.بنابراين نسبت مصرف برق به وسيله ي فرايند پخت کلينکر بالاست.در کارخانه هايي که عمدتاً از کوره ي فرآيند تر استفاده مي شود،فرآيند آسياب کردن پاياني نيروي زيادي مصرف مي کند که علت آن را در بالا ذکر کرديم.در چنين مواردي ،حفاظت از انرژي را بايد با تمرکز بر روي مصرف سوخت در فرايند پخت کلينکر و فرايند آسياب کردن پاياني (مصرف الکتريسيته)انجام داد.
 

zeinab68

عضو جدید
کاربر ممتاز
2.2فرآيند خردايش مواد خام

2.2.1فرايند تر

ازآنجايي که مواد خام توسط اين روش به خوبي هموژن مي شوند ،نسبت اختلاط مواد اوليه حتي پس از خردايش نيز مي تواند تصحيح شود.اين فرايند نسبتاً ساده است.در شکل 3يک مثال آورده شده است.

2.2.2فرآيند خشک

شکل4 نشان دهنده ي سه فرايند cوbوaاست.مواد اوليه ي رسيده به کارخانه داراي درصد کمي رطوبت هستند .سنگ آهک تقريباً 2تا5درصد آب و خاک رس تقريباً 5تا 10 درصد آب دارد.در فرآيند خشک اين نياز وجود دارد که در هنگام خردايش آب آن تبخير شود.در شکل 4فرايند aبه وسيله ي يک خشک کن مجزا انجام مي شود که در اين فرآيند آب موجود در مواد اوليه به وسيله ي يک رپيد دراير (rapid dryer)يا ايمپکت دراير(Impact dryer)تبخير مي شود.عملکرد خشک شدن در کنار عمل خردايش صورت مي گيرد .يعني به جاي اينکه از يک خشک کن دوار استفاده شود،در حين خردايش ،مواد خشک مي شوند.

در شکل 4فرايند c مثالي از يک آسياب غلطکي عمودي است.براي خشک کردن ،از گازهاي احتراق خروجي از کوره و گازهاي پيش گرم شده بهره مي گيرند ،اما در بعضي اوقات که درصد رطوبت مواد اوليه در بخشي از سال بيش تر مي شود،از مبدل هاي گاز داغ نيز بهره برده مي شود.

2.3فرايند پخت کلينکر

2.3.1فرايند تر

يک مثال خاص از فرايند شامل يک کوره ي استوانه اي مي شود که داراي طولي 40برابر قطر داخلي استوانه است.اين کوره معمولاً با نام long economical kilnمعروف است و با شيبي تقريباًٌ 2/5تا 4درصد و به آهستگي با سرعت بين 0/5تا 1/5دور بر دقيقه (rpm)در حال چرخش است.مواد اوليه که به صورت يک دوغاب با 38تا 40 درصد آب است از انتهاي بالاتر کوره به داخل آن تزريق مي شود در حالي که سوخت از سمت پايين تر کوره در حال سوختن است.در محل ورودي مواد خام،يک منطقه ي داراي پرده هاي زنجير مانند وجود دارد .که اين بخش زنجير وار کمک مي کند تا دوغاب خشک شود.کلينکرهاي داغ که در کوره زنيتر شده اند به سرد کننده فرستاده مي شوند .و دماي آن ها به 100تا 80 درجه ي سانتي گراد مي رسد.هواي خروجي از سرد کننده بطور مؤثر به عنوان هواي ثانويه براي احتراق در کوزه استفاده مي شود.

شکل 5 توزيع دما در کوره را نشان مي دهد.
همانگونه که از شکل بالا مشخص شده است کوره ي فرايند تر داراي خصوصيات ممتازي است که اجازه مي دهد که 4 فرايند خشک شدن دوغاب ،پيش گرم شدن،کلسينه شدن و زنيترينگ مواد اوليه مجموعاً در داخل آن اتفاق بيفتد.
از آنجايي که سيستم ساده است و به آساني کار مي کند .فقط يک بار نياز است تا شرايط عملياتي بهينه گردد. که اين وضعيت را مي توان به آساني پايدار کرد.از سوي ديگر،تبخير تقريباً 40 درصد آب از دوغاب نياز به يک حجم بزرگ از حرارت به مقدار تقريبي 400kcal براي هر کيلو گرم از کلينکر دارد.به عنوان يک نتيجه ي کلي،مصرف زياد سوخت در کوره هاي مورد استفاده در فرايند تر،يک عيب بزرگ است که در همه ي انواع کوره هاي موجود در فرايند تر نيز وجود دارد.به عنوان يک اقدام متقابل براي کاهش مصرف سوخت استفاده از يک ***** که مواد اوليه را با 18تا 20درصد آب و به صورت فيزيکي دي هيدراته مي کند ممکن است انجام شود.در اين مورد،به هر حال ،از آن جايي که کاهش دماي کوره به مقدار 500 درجه سانتي گراد مشکل است ،اقدام متقابل ديگر براي صرفه جويي در مصرف انرژي استفاده از گازهاي خروجي براي توليد انرژي برق مورد نيار است بنابراين به ناچار مجبوريم که سيستم را پيچيده تر کنيم.
 

zeinab68

عضو جدید
کاربر ممتاز
2.3.2فرايند نيمه خشک

فرايند نيمه خشک يک مثال خاص از فرايند خشک است که دراين فرآيند از يک کوره ي ليپول (lepol kiln)يا يک کوره ي شافت (shaft kiln)استفاده مي شود.در هر دو نوع کوره،مواد اوليه در فرايندي خشک، آسياب مي شوند و به شکل گلوله با قطر 10 تا 15ميلي متر در مي آيند که علت اين گلوله اي شدن اضافه نمودن 13 درصد آب است.در مورد کوره ي ليپول ،گلوله هاي توليدي خشک شده و به وسيله ي يک پيش گرم کننده ي متحرک (movable grate preheater)،پيش گرم مي شوند .شکل اين پيش گرم کننده ي متحرک در شکل 6آمده است .
پس از اين مرحله گلوله ها به کوره تزريق مي شوند .اين سيستم اولين بار به عنوان راه کاري براي مجزا نمودن فرايند پيش گرم مواد اوليه در کارخانجات سيمان مورد استفاده قرار گرفت .که دراين روش فرايند پيش گرم و فرايند پخت به صورت مجزا و با وسايل با بازده گرمايي بالا انجام مي شود.ولي هنگامي که کوره هاي با پيش گرم متعلق (sp kiln)ابداع شد، اين نوع کوره موقعيت خود را از دست داد ولي به خاطر آنکه اين نوع کوره مصرف انرژي را کاهش مي دهد مورد اشاره قرار گرفت.
در کوره ي شافت،سوخت (کک،کک نفتي يا آنتراسيت (زغال سنگ خشک و خالص))در فرايند گلوله اي شدن مواد اوليه اضافه مي شود .تمام فرايندهاي خشک شدن،زنيتر شدن و سرد شدن در يک بستر متحرک عمودي انجام مي شود.اين روش قبل از بوجود آمدن کوره ي دوار (rotary kiln)مورد استفاده قرار مي گرفت .اخيراً (همانگونه که در شکل 7ديده مي شود)،کوره ي شافت با سيستم خروج مواد مداوم به طور عمده در چين و هند مورد استفاده قرار مي گيرد (اين سيستم خروج مواد در انتهاي کوره تعبيه مي شود).اين پيشرفت ها در تکنولوژي کوره از لحاظ صرفه جويي در مصرف سوخت مناسب است ولي اين جايگزيني کوره ها ضررهايي نيز دارد زيرا در حالت پايدار احتراق و يکنواختي کيفيت خلل وارد مي کند .لازم به ذکر است که اين اختلالات قابل جلوگيري نيز هستند.
2.3.3فرايند خشک

در فرايند خشک يک کوره با طول زياد و يک کوره با ديگ (boiler)وجود دارد.کوره هاي مورد استفاده در اين فرايند SP kilen،NSP kilenهستند.
کوره هاي با طول زياد (که به صورت خشک کار مي کنند )عمدتاً در کشورهاي آسياي ميانه و آسياي نزديک مورد استفاده قرار مي گيرد.در اين کشورها ،باران کمتر مي بارد.بنابراين درصد عناصر قليايي در مواد اوليه بيشتر مي باشد.خصوصيات اين کوره شبيه به کوره ي با طول زياد در فرايند تر است.در آسياي جنوب شرقي ،آمريکاي مرکزي و جنوبي و آمريکاي شمالي ،عمدتاً از کوره هاي با طول زياد مورد استفاده در فرايند تر بهره برده مي شود.
در شکل 8گذر سيستم هاي توليد ژاپن ديده مي شود .اين به نظر مي رسد که فرايند تر در حال جايگزيني بسيار سريع با فرايند خشک مي باشد.اين مساله انعکاسي از نياز به حفاظت از منابع انرژي است.و اين مطلب را پيشنهاد مي کند که کارخانجات سيمان در آينده بايد به صورت خشک عمل کنند.
سرعت مصرف انرژي در فرايند NSPتقريباً 750 کيلو کالري بر کيلوگرم کلينکر است.دراين رابطه ،کوره ي با طول زياد فرايند تر ممکن است مصرفي بين 1500تا 1700کيلو کالري بر کيلوگرم کلينکر داشته باشد.به استثناي موارد خاص سرعت مصرف انرژي در کوره ي فرايند نيمه خشک ممکن است بين 1000تا 1200کيلو کالري بر کيلو گرم کلينکر باشد.
شکل 9يک کوره ي SPبا يک چرخه ي 4مرحله اي (کوره ي فرايند خشک کردن با پيش گرم 4مرحله اي)نشان داده شده است.با اضافه کردن يک سيستم کلسينه کننده به شکل يک کوره ي NSPنتيجه مي شود .عموماً ،گازهاي خروجي از کوره هاي NSPوSPکه دمايي بين 350 تا 380درجه سانتي گراد دارد.براي خشک کردن مواد اوليه و توليد الکتريسيته استفاده مي شود.(همانگونه که در شکل 10مي بينيد).
2.4فرايند آسياب کردن پاياني

بطور کلي فرايند آسياب کردن پاياني به صورت زير تقسيم بندي مي شود:
1)سيستم آسياب کردن مدار باز
2)سيستم آسياب کردن مداربسته
آسياب استفاده شده در شکل 11 که مي تواند يک تيوپ ميل و يا يک بال ميل باشد(a)يک چرخه ي بسته و (b)يک چرخه مدار باز مي باشد.
در آسياب مدار باز ،پوسته ي آسياب طولي 4يا 5 برابر قطر آن دارد .که اين مساله موجب ايجاد نرمي مورد نظر ما در مواد اوليه مي شود.و ديواره هاي بيروني آسياب نيز با آب خنک سازي مي شود .که علت آن جلوگيري از بالا رفتن دماي محصولات داخل آسياب است.اين امر نيز امکان پذير است که آب به داخل آسياب پاشيده شود.اما اين کار مي تواند موجب کاهش کيفيت محصول توليدي شود.
در آسياب مدار بسته ،آسياب طولي 3برابر قطر دارد که اين مساله باعث تسريع در حرکت محصول توليدي مي شود.در اين روش کارهاي جداگانه اي مانند سرد کردن محصول و دانه بندي آنها نيز انجام مي شود.
 

zeinab68

عضو جدید
کاربر ممتاز
3.ارتقاء تکنيک هاي حفاظت از منابع انرژي

حفاظت ازانرژي دربخش هاي صنعتي از بخش نرم افزاري شروع مي شود. (بخش نرم افزاري شامل کنترل عمليات(Operation Control) و کنترل فرآيند(Process Control) مي شود.)
سپس به سراغ بخش سخت افزاري مي رود(بخش سخت افزاري شامل بهبود ادوات و وسايل و بهبود فرآيند مي شود.) عموماً مهارت هاي حفاظت از انرژي را مي توان به مراحل زير تقسيم بندي کرد:

مرحله ی1) اداره کردن مناسب اوضاع (Good housekeeping)

مهارت هاي حفاظت از انرژي بدون نياز به اضافه کردن وسايل زياد انجام مي شود. اين مهارت ها شامل موارد زير مي شود:
1)جلوگيري ازاتلاف انرژي (حتي مقادير کم)
2)بررسي استانداردهاي عملياتي در خط توليد
3) مديريت مؤثر
4) بهبود تکنيک عملياتي
5) کارهاي گروهي
6) بهبود تکنيک عملياتي


مرحله 2) بهبود فرآيندها

اين مسأله به معناي کاهش مصرف انرژي بوسيله اصلاح اساسي در فرآيند توليد(بوسيله بهبود تکنولوژي) مي باشد. بدون نياز به گفتن، اين مسئله روشن است که اين کار نياز به سرمايه گذاري وسيع در زمينه خريد ادوات و لوازم جديد دارد. به هرحال اين مساله با مدرن سازي فرآيند توليد پيوند خورده است.
وبه حفاظت از منابع انرژي ، بالا رفتن کيفيت، افزايش ارزش افزوده، افزايش قيمت محصولات در بازار کمک کرده و نياز به نيروي انساني را نيز کمتر مي کند.



 

zeinab68

عضو جدید
کاربر ممتاز
3.1 مديريت انرژي

3.1.1 سرعت مصرف انرژي

شکل 12و13و14 نشاندهنده ی يک تغيير در مصرف انرژي و سرعت مصرف انرژي در تمام کارخانجات ژاپن است. با مقايسه کردن دوره ها در شکل 12و 8 در زماني که مصرف سوخت به شدت کاهش يافته است اين مسأله معلوم مي شود که اين کاهش در مصرف سوخت در دوره اي اتفاق افتاده که با دوره ي استفاده از سيستمNSP همزمان شده است. درهمان دوره سرعت مصرف انرژي الکتريکي به طور يکباره افزايش يافته است و سپس به طور مداوم کاهش يافته و براي چند دوره از سال 1973 ثابت مانده است.
دراين دوره، سوخت از نفت به زغال سنگ تغيير يافته است. بهبود اتفاق افتاده بعد ازآن دوره ممکن است نتيجه اي از استفاده از آسياب رولري (Roller mill) به عنوان آسياب کننده مواد خام اوليه باشد.

3.1.2 تحلیل وضعیت عملیاتی

بهبود در زمینه مصرف انرژی با شناسایی صحیح از وضعیت موجود امکان پذیر می باشد. کارهای روزانه ای که در کارخانه انجام می شود را باید در لوگ شیت هایی(log shates) ثبت کرد.
و به طور روتین این لوگ شیت ها باید بوسیله مسئولان اجرایی کارخانه بررسی و با داده های قبلی مقایسه گردد. و درصورتی که ناهنجاری وجود دارد سریعاً به سایت کاری اطلاع داده شود. داده هایی که دارای اهمیت هستند را ثبت کرده که هر مسئله ی عملیاتی روزانه باید با آنالیز این داده های مهم حل گردد.اما برای بهبود بیشتروضعیت موجود، این اطلاعات کافی نیست و بنابراین اندازه گیری جزئی بیشتری باید صورت بگیرد. و نتایج بدست آمده به صورت موازنه ی ماده و موازنه انرژی(گرما) جمع آوری می شود. چیزی که در اینجا ازاهمیت خاصی برخوردار است بررسی بر روی نتایج بدست آمده است. مشکلات بوسیله ارجاع دادن به برنامه ی ابتکاری کارخانه و یا نتایج اندازه گیری در گذشته و مقایسه آنها با دیگر کارخانجات مشابه ( به صورت محض) مشخص می گردد. با کمی مدل سازی،آثار بهسازی را می توان پیش بینی کرد. و این مسائل را می توان خواه به صورت ابتکاری یا به صورت تقلیدی استفاده کرد.
اندازه گیری های انجام گرفته نیازمند تکنیک های ویژه و یا وسایل ویژه نمی باشد اما، از آنجایی که دما، فشار و سرعت جریان همواره، در طی عملیات تغییر می کند، کمی مهارت و شکیبایی برای کاهش خطا دراندازه گیری ها نیاز است. و این مسأله ضروری می گردد که یک نقطه اندازه گیری در یک مکان متفاوت از مکان های معمولی کار بر پا کرد و همفکری با یک گروه کاری مناسب نیز به عنوان ضمانت کار،مناسب می باشد.
البته اندازه گیری بایستی بوسیله همکاری گروهی انجام شود. تفسیرهای اندازه گیری برای عملیات نباید به عنوان داده ی اندازه گیری پذیرفته گردند این مقادیرهمواره اطلاعاتی درست و صحیح نیستند.
 

zeinab68

عضو جدید
کاربر ممتاز
3.1.3 ایجاد آیین نامه ی عملیاتی

نیازبه گفتن این مسأله که دستیابی به عملیات پایدار در سطح گسترده یک حالت ضروری برای رسیدن به سود در یک کارخانه ی سیمان می باشد(لازم به ذکراست که کارخانه های سیمان مقادیرزیادی انرژی مصرف می کنند.)
یک سیستم محاسباتی می تواند نقصان در کارخانه را مورد ارزیابی قراردهد که این نقصان ها می تواند باعث تعطیلی یک واحد تولیدی به خاطر وضعیت کارخانه و اوضاع بازار شود.
برای مثال محاسبات زیر را می توان انجام داد:
زمانی که:
1) ظرفیت مجاز کارخانه 500 تن در روز باشد.
2)زمان مورد نیاز برای ریکاوری 12 ساعت باشد.
3) زمان اتلافی و سرعت کاهش عملکرد در زمان بالا 50 درصد باشد.
سپس:
اتلاف گرما(قیمت انرژی 5.5(دلار بر تن))
دلار 1938=(درصد)50×(تن)500×(12.24)×(دلار بر تن)15.5
- سود به خاطرکاهش خروجی(یک سود کم حدود 29.5دلار برتن) در نظرگرفته شده است.
بنابراین:
دلار3687=(درصد)50×(زمان)500×(12.24)×(دلار بر تن)29.5
از اینرو جمع کلی موارد بالا 625/5دلار می شود. اگرعملیات ریکاوری بطورمناسب انجام شود،اتلاف ممکن است کاهش یابد اما اگریک حادثه ی ثانویه مانند شکست آجرها باعث اتلاف شود ممکن است اتلاف بوجود آمده ازحالت قبل بیشتر شود.
عملیات ریکاوری زمانی که تاسیسات و وسایل بزرگتر شوند، طولانی تر می شود. از سوی دیگر این مسأله قطعی است که تا یک عملیات پایدارو مداوم انجام نشود، مسئله حفاظت از انرژی بخوبی انجام نمی شود. و یک رهبری خوب برای تهیه سالنامه های مناسب مورد نیازاست. در این سالنامه ها، راه کارهای صرفه جویی انرژی آورده شده است. از این رو درهربخشی که این سالنامه های تخصصی به خوبی تهیه شود و مورد استفاده ی متخصصان قرار گیرد،مصرف انرژی کاهش می یابد.

3.1.4 انتخاب مواد اولیه خام و سوخت

پس ازانجام کارهای مربوط به کارخانه و برطرف کردن فاکتورهای نامعین مختلف، منبع ماده ی اولیه ی خام می تواند مورد بازدید قرار گیرد. با بسط لایه های ذخیره منبع(معدن) مواد اولیه یا آداپته کردن سیستم پیش مخلوط کن می توان موقعیت هایی برای جایگزینی مواد اولیه ی ارزان قیمت به جای مواد اولیه گران بها ساخت. هنگامی که کامپیوتر برای کنترل فرآیند مخلوط کردن مواد اولیه استفاده می شود،فرآیند به صورت پایدارتری انجام می شود.
مخلوط کردن سرباره کوره بلند(blast furnace slag)، پزلان(Pozzolan)، و خاکستر بادی(Fly ash) با مواد اولیه به طور عمده ای در زمینه ی حفاظت از منابع انرژی به ما کمک می کند. استاندارد صنعتی ژاپن(jis) استانداردهایی کیفی برای نسبت های مخلوط کردن ارائه کرده است. برای رسیدن به این استاندارد هم باید مخلوط مناسب تهیه نمود و هم باید گروه سیمان مناسب(host semen) نیزانتخاب گردد. و کیفیت این دو عامل به دقت کنترل شود. دراین جهت، کنترل کیفیت، اولین قدم برای حفاظت از انرژی می باشد.
عموماً، گازطبیعی(Natural gas)، نفت سنگین(heavy oil) و زغال سنگ به عنوان سوخت مصرف می شود. در ژاپن در حدود سال 1980 سوخت نفت سنگین با زغال سنگ جایگزین شد. این مسأله به خاطر وقوع بحران نفت ثانویه، اتفاق افتاد. که در شکل 18 دیده می شود. اخیراً مصرف نفت سنگین تنها حدود 1درصد نسبت به زغال سنگ است. تغییر نوع سوخت مصرفی از نفت سنگین به زغال سنگ نه تنها در ژاپن بلکه درکشورهای قدرتمند در زمینه ی نفت مانند اندونزی و مالزی نیزاتفاق افتاد. از ضایعات لاستیکی تولید شده درسال 1992 در ژاپن که مقدار آن 000/840تن بوده است حدود 20.1درصد آن در زینترنیگ سیمان استفاده شده است. با توجه به ناحیه ای که کارخانه های تولید سیمان درآن واقع هستند، سوخت های جایگزین متنوعی ممکن است پیدا شود.

3.1.5 تولید انرژی با ریکاوری گرمای تلف شده

برطبق داده ها و محاسبات صورت گرفته تقریباً 20% ارزش گرمایی سوخت بوسیله گازهای خروجی از پیش گرم کن ها حمل می گردد. همچنین گازهای خروجی از سرد کننده تقریباً 14درصد از این مقدار را با خود حمل می کند. این ارزش گرمایی باقیمانده را می توان برای خشک کردن مواد اولیه خام استفاده کرد و یا از آن برای تولید برق بهره گرفت. در کارخانجات سیمان موجود در ژاپن 19 کارخانه تولید برق وجود دارد که ازاین گرمای تلف شده بهره می گیرند( این کارخانجات تولید برق به صورت مستقل عمل کرده که 41.8 درصد از کل انرژی الکتریسیته ی مصرفی در کارخانجات سیمان بوسیله این کارخانجات تولید برق تأمین می گردد.(همانگونه که درشکل 2 نشان داده شده است))،

شکل 15 نشان دهنده یک دیاگرام جریانی(Flow diagram) این کارخانجات است.
سیستم های تولید برق خصوصی براین فرض آداپته شده اند که مخارج روزانه (running cost)کمتراز قیمت واحد برق خریداری است. اگرآسیاب پایانی ظرفیت اضافی داشته باشد، به هرحال می توان از مقدار بارکمتری درطی روز(برای آسیاب کردن) استفاده کرد و درطی شب مقداراین بار افزایش می یابد. به علاوه باعث ایجاد مزایایی مانند جلوگیری از خاموش شدن آسیاب به خاطر فاکتورهای خارجی و بهبود سرعت عملیات کوره می گردد.
 

zeinab68

عضو جدید
کاربر ممتاز
3.1.6 سرمایه گذاری در زمینه ی وسایل



شکل 16،17و 18 نشان دهنده این هستند که حفاظت از انرژی در ژاپن به صورت بهنگام انجام شده است. و با گام هایی آهسته به سمت بالا بردن ظرفیت تولید و بهبود سودمندی کار پیش می رود. هنگامی که یک سرمایه گذاری انجام می شود، نه تنها در زمینه ی مصرف انرژی صرفه جویی می شود بلکه این کار موجب اثرات ترکیبی مانند افزایش تولید و پایدارشدن عملیات نیز می شود. این مزایا بسیارمهم و بزرگ بوده و به زودی سرمایه گذاری خود را باز می گردانند. از این رو یک سرمایه گذاری در زمینه ی نوسازی کارخانه امری حتمی و مورد نیازاست که این کار یک پروسه ی صنعتی برای باقی ماندن در بازار رقابتی دنیا است. که در این میان همواره یک شانس و موقعیت برای بهبود امکانات و صرفه جویی در مصرف انرژی است. و مدیریت کارخانه باید همواره آماده ی بالا بردن و بهبود ادوات کارخانه باشد و زمان را از دست ندهد. مدیران زیردستی و مهندسان باید همواره اطلاعات به روز شده را به مدیران ارشد بدهند تا آنها بتوانند تصمیم گیری مناسب را در موقع بحرانی اتخاذ کنند.
3.2 تکنیک صرفه جویی در مصرف انرژی در فرآیند تولید سیمان از آنجایی که فرآیند تر دارای سیستمی ساده است،این مسأله مهم است که بازده عملیاتی آسیاب ها دراین فرآیند ارتقاء داده شود. عملکرد آسیاب به عوامل متنوعی بستگی دارد. و از بین همه ی آنها، فاکتورهای اساسی به صورت یک فرمول تجربی در زیر آورده شده است:
تئوری سوم پیوند:
1.............

که در این فرمول:
کیلو وات ساعت بر تن کوچک مواد آسیاب شونده =W
میکرون - 80درصد از خوراک عبوری =F
میکرون - 80درصد از محصول عبوری =P
ایندکس کار با توجه به آسیاب تست پیوند=Wi
سرعت بحرانی آسیاب
2.............
قدرت حرکت آسیاب
3..............N=C.G.Di.n
که در این فرمول
مصرف برق بر حسب N=KW
وزن شارژ آسیاب (توان) =G
قطر داخلی آسیاب(Di=(m
(دور بر دقیقه) سرعت چرخش آسیاب =n

فاکتور قدرت شکل 19=C
انتخاب مناسب اندازه گلوله،مقدار گلوله شارژ شده با توجه به اندازه آسیاب و بسیاری از راهنمایی های دیگر در این زمینه در کتب زیر آورده شده است:
"Cement Engineers, Handbook,, )Labohm and others, Bau Verlag Gmbh, Wiesbaden)"
"Cement-Data- Book,, )Duda, Macdonald & Even, London"
عموماً ،سیستم آسیاب های ساخته شده به نحوه ای طراحی می شوند که بتوان آنها را درموقعیت واقعی و با دقت بسیارخوبی تنظیم کرد. که این تنظیمات دقیق بواسطه نمونه گیری های انجامی بدست آمده است. اما با گذر زمان، خواص مواد اولیه تغییرمی کند. که این تغییر کردن خواص در مواد اولیه به صورت مداوم انجام می شود. بنابراین، نقطه بهینه درعملیات تولید بوسیله استفاده از سیستم در شرایط واقعی بدست می آید.
اگرحجم تولید در طی پیشرفت عملیات کاهش یابد، در وهله ی اول باید به مقادیر F (اندازه ی خوراک ورودی) شک کنیم. هنگامی که اندازه F از مقدارمورد نظر بزرگتر باشد، یکی از راه حل ها، افزایش گلوله ها در آسیاب اولیه است. اما یک راه حل بهتر تنظیم اندازه ی دانه ها بوسیله فرآیند فشردن پیشرفته(Preceding crusher process)است که در طی این
فرآیند اندازه خوراک ورودی کاهش می یابد. اگر محصولات زبر شوند و یا اندازه P در فرمول 1 بزرگ شود، باید ابتدا مقدار گلوله شارژ شده به آسیاب را بررسی کنیم زیرا کاهش قدرت سایندگی موجب زبر شدن محصولات خروجی می گردد. فرمول1 در اصل برای یک سیستم مداربسته (system closed circuit ) ابداع شده است که به صورت خشک، کار می کند، اما این فرمول را برای فرآیند تر نیز می توان استفاده کرد. البته برای این کار باید فاکتورهای تغییر دقیقی برای افزایش دقت کار اعمال گردد. در فرآیند تر، از آنجایی که سطح گلوله همواره با آب شسته و تمیز می شود، بازده ی آسیاب کردن 20-30 درصد نسبت به روش خشک بالاتر است، اما در روش تر سایش گلوله ها و آسیاب بیشتر است. کاهش گلوله به خاطر سایش، با کاهش بار موتور آسیاب نمایان می گردد.(همانگونه که در شکل 17 دیده می شود،رابطه ای میان آنها به صورت خطی نمی باشد).
با اندازه گیری دوره ای در فاصله زمانی بین 2-3 ماه می توان به خواص سایندگی یک آسیاب پی برد. بعد از این با توجه به زمان عملیات یا مواد خروجی، مقدار شارژ اولیه به صورت دقیق معین می گردد.
صرفنظر از این که فرآیند تولید به صورت خشک یا تر باشد، باید از آسیاب کردن بیش از حد مواد جلوگیری کنیم زیرا آسیاب کردن بیش از حد موجب مصرف انرژی بیشتر می شود که این امر مد نظر ما نیست. تجربیات بدست آمده در سال های اخیرنشان داده است که حتی اگر درصد مواد باقی مانده بر روی الک 88 میکرون به 13-15 درصد نیز برسد، در فرآیند زینترینگ خللی وارد نمی شود، البته تا جایی که دانه های زبر بتوانند با کربنات کلسیم ترکیب شوند. (این تجربیات بر اساس کار بر روی کوره های SP و NSP بدست آمده است).
درکل تدابیر انجامی موجب صرفه جویی 3-5 درصدی در مصرف انرژی الکتریکی می شود. مخلوط نمودن خاکستر بادی و یا پزولان به عنوان مواد جایگزین خاک رس باعث بدست آمدن همین نایج می گردد. ( البته این مسأله درصورتی است که اندازه ی دانه های مواد اولیه ریز باشند).
درمورد آسیاب فرآیند خشک، علاوه بر بازده آسیاب ،دو مسئله: بهبود دهنده ی بازده اقتصادی سوخت و کاستن قدرت فن ها باید حل گردد. برای خشک کردن مواد اولیه می توان از گاز خروجی پیش گرم کن استفاده کرد. این گاز خروجی ظرفیت گرمایی 170کیلو کالری درهرکیلوگرم کلینکر دارد. بنابر این این گاز از لحاظ تئوری می تواند 10 درصد آب موجود در مواد اولیه را بخارکند. از این رو می تواند در صرفه جویی مصرف انرژی به ما کمک کند.
اخیراً، گسترش استفاده از آسیاب رولری(roller mill) که در شکل 4 نشان داده شده است،سهم بزرگی در کاهش حجم گاز موجود درسیستم و افزایش انرژی مصرفی بوسیله فن داشته است. تفاوت در قدرت آسیاب به خودی خود به کاهش مصرف انرژی الکتریکی بستگی ندارد، اما ، درمقایسه با فرآیند های موجود ( که بوسیله آسیاب گلوله ای انجام می شود)، مصرف انرژی 10-15درصد کاهش می یابد کاهش بیشتر در مصرف انرژی در صورتی مورد انتظاراست که حجم گازعبوری یا چرخنده در فرآیند کاهش یابد.
 

zeinab68

عضو جدید
کاربر ممتاز
3.2.2 کوره پيش گرم کن

همانگونه که در شکل 8 نشان داده شده است فرآيند اشتعال در بخش سيمان ژاپن به سرعت تغيير کرده است. اين تغيير باعث جايگزيني فرآيند تر بوسيله ی فرآيند NSP شده است.و از اين رو، سرعت مصرف انرژي(حرارت) بطور قابل ملاحظه اي بهبود يافته است.شکل 20مثالي خاص از پيش کلسينه کننده(precalciner) مورد استفاده در ژاپن است.
شکل 21، فرآيند پخت کلينکر در سيستم NSP را نشان مي دهد. اين مطلب نيز فهميده مي شود که بيشتر حجم حرارت مورد نياز براي تجزيه Caco3 مصرف مي شود. و بيشتر اين حجم حرارتي نيز بطور مستقيم در بخش پيش کلسينه کننده(Precalciner) مصرف مي شود، در نتيجه بار گرمايي کوره در سيستمNSP عمدتا کاهش مي يابد و فرآيند پيش کلسينه کننده به آساني مي تواند(صرفنظر از حالت کوره) کنترل گردد.

در حقيقت، سيستم NSP براي اين مسأله ابداع شد که اندازه کوره را در فرآيندهاي نيازمند به حجم بالاي توليد، کاهش دهد. از اين رو برخي از سوءتفاهم ها وجود دارد اما از آنجايي که مکانيزم عالي اشاره شد در بالا به طور پيش بيني نشده اي توليد NOX را متوقف مي کند، سيستم NSP بايد براي کوره هاي با ظرفيت کم مورد استفاده قرار گيرد.
عموما سیکلون (بخش مخصوص گرم کردن مواد اوليه) داراي مقاومت بادگيري(resistance ventilation) بزرگي دارد و معمولا افت فشاري در حدود 100-150mmAq در طي عبور جريان در داخل آن اتفاق مي افتد .

يک پيش گرم کن از 4يا 5 سيکلون تشکيل شده است. که اين سیکلون ها مصرف انرژي بالايي دارند و اين يکي از بدي هاي سيستم SP و NSP است.

در تمام فرآيندها، جلوگيري از هدر رفتن هواي جريان يافته، امري مهم است و از اين رو پيش گرم کن نيز يک استثناء محسوب نمي شود. همانگونه که در شکل 22 نشان داده شده است، هنگامي که مدل سازي انجام مي شود، از يکي از بخش هاي پيش گرم کن به عنوان مدل استفاده مي شود که در اين مورد مقدار هدر رفتن انرژي 10 درصد است. اين هدر رفتن 10 درصدي باعث زيان 18 کيلو کالري بر هر کيلوگرم کلينکر مي شود. البته هنگامي که هدر رفتن انرژي حاصل از افزايش مقدار گاز خروجي و يا کاهش خروجي نيز اضافه گردد، مقدار هدر رفتن کلي بيش از اين مقدار مي شود. جلوگيري از هدر رفتن انرژي در اين بخش را بايد در راهکار زير بهبود داد:
1-بهبود امکانات و وسايل
2-آموزش اپراتورها
بازرسي و تميز کاري خروجي ها که در طي عمليات به طور مکرر باز يا بسته مي شوند بايد صورت گيرد.
و همچنين نحوه ي باز و بسته کردن اين دريچه ها بايد اصلاح گردد تا از هدر رفتن انرژي جلوگيري گردد. به علاوه بايد همواره اين تذکر به کارگرها داده شود که پس از اتمام عمليات دريچه ها را محکم ببندند. ترويج يک عادت که کارگران دريچه ها را محکم ببندند يک ضرورت است. البته محکم بسته نشدن را مي توان از روي صدا، خروج گاز به بيرون و ... بدانيم. همچنين اين توصيه مي شود که اتصالات و فلنج ها (Flanges) را براي آسودگي بيشتر جوشکاري کنيم. و در صورتي که در آنها ترکيدگي و يا سوراخ ايجاد شود، آنها را تعويض کنيم. در بسياري از موارد، امکان ايجاد ترک در بخش هاي متحرک کوره و لبه ها بيشتر است که علت اين امر ايجاد تغيير شکل در اين ابزار بوسيله حرارت و خزش اتفاق افتاده است. سوراخ هاي بوجود آمده در اين اجزا به طور مستقيم باعث کاهش خروجي کوره مي گردد. پس از تعميرات، بايد داده هاي بدست آمده، با داده هاي قبلي مقايسه گردد. تا بواسطه آنها در مورد نحوه تاثيرگذاري اين ترک ها بر مصرف انرژي اطلاعات بدست آوريم.
 

zeinab68

عضو جدید
کاربر ممتاز
3.2.3 خنک کننده هاي سريع هوايي

صرفنظر از نوع، سرد کننده ي کلينکر براي بهبود کيفيت کلينکر نصب مي گردد. اين سردکننده با سريع سردکردن کلينکر خواص آن را بهبود داده اما اين جزء علاوه بر اين عمل ، وظيفه بازيافت گرمايي باقيمانده در داخل کلينکر را نيز بر عهده دارد. (کلينکر ها پيش از خنک شدن بوسيله سردکننده ي سريع، به حالت قرمز در آمده اند). هواي گرم شده بوسيله سردکن ها را مي توان براي پيش گرم کردن مواد اوليه استفاده کرد. در اين نقطه نظر، سردکننده ي گريت (grate cooler) برتر از نوع پلانتری (Planetary cooler) یا سرد کننده ی آندر (under cooler) است، که علت آن اين است که در نوع گريت دماي هواي ثانويه قابل کنترل مي باشد.
بر اساس محاسبات انجام شده، گاز خروجي سردکننده داراي حجم گرمايي بين 13 تا16 در صد از کل حجم گرماي مصرفي را دارد. و هنگامي که بازده گرمايي کوره و پيش گرم کن بهبود يابد، مقدار هواي ثانويه ی مورد استفاده براي احتراق کاهش مي يابد. مقدار گاز خروجي از سردکننده افزايش مي يابد. که نتيجه اين کار افزايش اساسي در اتلاف است. به عنوان يک اقدام متقابل، اين لازم است که ضخامت لايه کلينکر بر روي سردکننده گريت افزايش يابد. اين امر موجب بهبود بازده تبادل گرمايي مي گردد.

3.2.4 آسياب زغال سنگ

براي خشک کردن و آسياب کردن زغال و تزريق آن به کوره، سيستم مناسبي بايد در نظر گرفته شود. انواع مختلف اين سيستم ها عبارتند از:
a.پخت مستقيم (Direct Firing)
b.پخت نيمه مستقيم (Semi- direct Firing)
c.پخت غير مستقيم (Indirect Firing)
از ميان سيستم هاي بالا، سيستم پخت مستقيم در بسياري از جاها استفاده مي شود که علت آن اين است که وسايل آن ساده، قيمت ساختمان وسايل آن کم و عمليات آن ساده است، اما براي اهداف با دقت بالا، کنترل کردن مقدار خوراک کوره و محدود کردن حجم هواي ثانويه ، مينيمم است که در اين حالت سيستم پخت غير مستقيم برتري دارد. اين امکان داردکه سيستم a را با سيستم c عوض کرد اما ضروري است که توجه خاصي به جلوگيري از احتراق خود بخود و انفجار پودر زغال سنگ انجام شود.

3.2.5 آسياب کردن پاياني

عموماً، در ارتباط با کيفيت سيمان بايد اين مسئله را بيان کرد که استحکام اوليه(Inital Strengh) با بهبود درجه نرمي(Fineness) محصولات بالا مي رود اما با اين عمل استحکام بلند مدت (Strengh long- term) بالا نمي رود. بنابراين بايد از آسياب کردن بيش از حد اجتناب کرد. عدد بلين(Blain Value) [ ] و در صد باقيمانده بر روي الک 88 و يا (99) ميکرون به عنوان واحد براي درجه نرمي محصول در نظر گرفته مي شود. عدد بلين به خاطر سهولت در اندازه گيري در سايت عملياتي کارخانه مورد استفاده قرار مي گيرد.
به هر حال، اين واحد ، که زماني مقايسه ها در زمينه ي بهبود صورت مي گيرد، ناکافي مي باشد (يعني در همه مواقع نمي توان از عدد بلين استفاده کرد). عدد بلين بيان کننده رشد در ناحيه ی سطح ويژه ي شيئي آسياب شده است. که اين عدد مقدار انرژي مصرفي در فرآيند آسياب کردن را به ما مي دهد. توزيع اندازه ي ذرات محصولات اساساً متنوع مي باشد که اين تنوع وابسته به نوع آسياب است. محصول توليدي از فرآيند چرخه باز داراي توزيع اندازه ذرات وسيعي نسبت به فرآيند چرخه بسته دارد و زماني که مواد اوليه نيمه پخته به صورت کلينکر در مي آيند، عدد بلين بالايي بدست مي آيد که اين مسأله ي غيرعادي است و علت آن اين است که اين مواد به آساني آسياب مي شوند. به صورت خاص، هنگامي که تعدادي آسياب و سيستم با اندازه هاي مختلف استفاده شوند، براي جلوگيري از ايجاد قضاوت هاي نادرست، اين مطلوب است که عدد بلين را 88MR قرار دهيم.
در فرآيند چرخه بسته، يک بخش جداکننده ي ديناميکي براي جلوگيري از آسياب کردن بيش از حد محصولات و مخلوط اجزاي زبر نصب شده است. بهر حال انواع مختلفي از جداکننده ها ابداع شده است، که در آنها مکانيزمي وجود دارد که بوسيله آن اجزاي با قطر بحراني بوسيله يک جريان هوا از باقيمانده محصولات جدا مي شوند، بنابراين اين جداکننده ها را عموماً به جداکننده ي هوايي(Air Separators) معروفند.
اگر چه فرآيند بسته، نيروي مصرفي بوسيله فن هاي بخش جداکننده نيز به مصرف انرژي افزوده مي شود اما مصرف انرژي در فرآيند چرخه بسته 10-15 درصد کمتر از فرآيند چرخه باز است. از آنجايي که هر جداکننده به نحوه اي ساخته شده است که اجازه ي تغيیر خواص تقسيم بندي را دارد، يک مسئله کليدي براي مصرف کم انرژي در اين سيستم، کنترل مقدار خوراک آسياب است. اين کنترل مقدار خوراک آسياب باعث ايجاد يک سرعت مناسب در آسياب مي گردد و بنابراين محصول توليدي با انرژي کمتري آسياب گشته و به مقدار نرمي مورد نظر ما مي رسد.
بهترين توصيه براي کاهش مصرف انرژي در اين بخش تبديل فرآيند چرخه باز به فرآيند چرخه بسته است.
توضيحات مفصلي در بخش هاي قبلي در مورد افزايش بازده در آسياب هاي مورد استفاده در بخش مواد خام داده شده است. لذا از تکرار آنها پرهيز مي کنيم. در همه ي انواع آسياب گلوله اي، مقدار بچ آسياب يک مسئله ي کليدي است. در اين مورد اين مسئله توصيه مي شود که حالت بهينه ي مقدار بچ آسياب يکبار تعيين گردد. و بر همان مبنا آسياب پر گردد. با تعيين عوامل موثر بر آسياب کاري حالت بهينه شناسايي مي شود. که با مقايسه ي تغيير عوامل مؤثر بر آسياب کاري مي توانيم آگاه شويم که آيا حالت آسياب ما مناست است يا نه؟
نياز به گفتن اين مطلب نيست که بايد بدانيم بار اضافي آسياب موجب مصرف انرژي بيشتر مي شود. افزايش بار آسياب پاياني در صورتي توصيه مي گردد که حجم کلينکر زنیته شده بوسيله کوره بسيار بالا باشد. و يا بخاطر محدوديت زمان استفاده از نيروي برق ما نيازمند آسياب کردن مقدار بيشتری ماده در يک زمان معين باشيم. اين مسئله به قيمت برق مصرفي در زمان هاي مختلف روز و شب و منبع تامين کننده ي انرژي مورد نياز کارخانه وابسته است. در کارخانجاتي که از منبع برق عمومي استفاده مي کنند بهتر است استفاده از آسياب در ساعات اوج مصرف برق نباشد.
در فرآيند آسياب کردن پاياني، آسياب کردن مخلوط کلينکر با سرباره ي کوره بلند موجب افزايش سرعت مصرف برق مي شود. در برخي موارد، همچنين ممکن است سوخت نيز احتياج شود. به هر حال اين افزايش در سرعت مصرف انرژي بسيار کوچکتر از کل انرژي مصرفي مورد نياز براي پخت کلينکر است. البته مسأله ي مورد توجه ديگر کيفيت سيمان توليدي نيز هست که اين مورد با توجه به مخلوط کلينکر و مواد افزودني و همچنين تدابير کاهش مصرف انرژي بايد فرآيندهاي توليد سيمان اصلاح و تعديل گردند.

4- نتيجه گيري

صنعت سيمان ژاپن به سرعت در حال تغيير بوده و در فرآيند توليد در حال حرکت از حالت تر به خشک است. همچنين با افزايش حجم توليد، سيستمNSP در حال گسترش است. از آنجايي که سهم سوخت در هزينه سيمان توليدي بسيار بالاست، حفاظت از منابع انرژي يک کار ضروري در اين صنعت محسوب مي شود (قيمت توليد سيمان وابسته به فرآيند توليد سيمان است). فرآيند تر به دليل مصرف انرژي قابل ملاحظه اش نمي تواند فرآيند خشک را مغلوب کند. البته بهبود فرآيندها در کارخانجات سيمان نيازمند صرف هزينه هنگفتي است که بايد پيش از هرگونه اقدام به مسائل مالي آن نيز توجه گردد. ضمناً پيش از هر گونه بهبود در فرآيند توليد به موارد اشاره شده در اين مقاله دقت کنيد.
منبع: Out Put of a Seminar on Energy Conservation in Cement Iudu,trr/theenargy Conservation Center (ECC), Tapan
 
بالا