سياهچاله و مباحث مربوط به آن

best eng

عضو جدید
سرگذشت مختصری از مرگ یک ستاره
مسلما" تا کنون هر یک از انسان تا حدی با قوانین گازها حتی در حد تجربی سر و کار داشته اند . یکی از این قوانین که با استناد به آزمایش در آزمایشگاه ثابت می شود این است که یک گاز هر گاه در فضای ظرفی قرار گیرد به طور یکنواخت در آن ظرف پخش می شود . این اثر را می توانیم بعینه در فضای اطراف خود مشاهده کنیم . اما این قانون به ظاهر ساده فقط در محیط ما صادق است . اگر کمی از محیط زمین تجاوز کنیم و به محدوده ی گازهای میان ستاره ای در فضای بیکران پای بگذاریم متوجه خواهیم شد که این قانون دیگر برای ابرهای عظیم درست نیست . زیرا آنها از قانون دیگری پیروی می کنند .
در این ابرها دما به قدری است که دیگر انرژی جنبشی مولکول های گاز به حدی نیست که بتوانند از ابر بگریزند در این شرایط آنها تحت تأثیر گرانش ابر به کانون آن که عمدتا" در مرکز ابر است سقوط می کنند . در این صورت ابر در خود جمع خواهد شد البته باید برای این حرف یک تبصره نیز بیاوریم . ابر مورد نظر ما باید دارای شرایطی باشد از جمله اینکه باید شعاع آن از مقداری معین که با توجه به جرم مولکولهای گاز ، چگالی و دمای آن تعیین می شود تجاوز کند . در مرکز این ابر آنقدر مولکول های بر روی هم دیگر سقوط می کنند تا اینکه آن ابر عظیم گذشته تبدیل به یک توده می شود در این شرایط آن قدر این مولکول ها با هم برخورد می کنند که ابر گرم می شود . میزان این برخورد ها به حدی افزایش می یابد که گرمای حاصل از آن بسیار زیاد می شود . این گرما به حدی است که به اتم های هیدروژن که بخش اعظم ابر را تشکیل داده اند ، اجازه می دهد که با یکدیگر واکنش گداخت هسته ای را انجام دهند . حاصل این واکنش تبدیل چهار اتم هیدروژن به یک اتم هلیم و یک نوترینو و مقداری انرژی است .


4H = He + neutrinos + energy


حال ممکن است در ذهن شما این هر انسانی این سؤال تداعی شود که چگونه ممکن است جرم به انرژی تبدیل شود در این شرایط باید فرمول معروف آلبرت اینشتن دانشمند بزرگ همه ی دوران فیزیک را به یاد آوریم که می گوید جرم و انرژی با هم ، هم ارز هستند. این رابطه به صورت زیر است . در این رابط c سرعت نور است که برابر 300000 کیلومتر بر ثانیه است .

E=mc²

با محاسباتی ساده به نتایج زیر می رسیم.

جرم چهار اتم هیدروژن = 27- ^ 10 × 6.693 کیلوگرم

جرم یک اتم هلیم = 27 - ^ 10 × 6.645 کیلوگرم

جرم گم شده = 27- ^ 10 × 0.0048 کیلوگرم

جرم گم شده تبدیل به انرژی شده است .





در مرکز هر ستاره در هر ثانیه واکنش های پیوسته گداخت انجام می گیرد که انرژی تولید شده توسط آنها میلیون ها برابر قدرتمند تر از انرژی زرادخانه های اتمی در زمین است در طی این واکنش گرمای عظیمی تولید می شود که ستاره را در برابر گرانش خودش محافظت می کند تا اینکه زیر این فشار منفجر نشود . اما سرانجام هر آغازی پایانی خواهد داشت . سوخت یک ستاره ی معمولی مثل خورشید بعد از 10 میلیارد سال به اتمام خواهد رسید . هدف اصلی این بخش از این تحقیق بررسی زمانی است که سوخت یک ستاره به اتمام می رسد . در چنین شرایطی که ستاره چند میلیون سال پایانی عمر خود را می گذاراند منبسط می شود و درجه حرارت آن افزایش می یابد برای مثال وقتی ستاره ای چون خورشید به پایان عمرش نزدیک می شود چنان منبسط می شود که مدار عطارد و زهره را فرا می گیرد و به مدار زمین می رسد در این شرایط هر روز خورشید تقریبا" سه چهارم آسمان زمین را فرا خواهد گرفت . ولی در آن روزگار مسلما" هیچ انسانی زنده نخواهد بود . زیرا از آن حرارت وحشتناک هلاک خواهد شد . حتی سخت جانترین باکتری ها نیز که در شرایط نا به سامان برای خود هاگ می سازند از بین خواهند رفت . به همین جهت در فکر است که بتواند برای سال های آتی خود پناهگاهی جز زمین بیابد .
حال چنین ستاره ای پس از آنکه منبسط شد سعی می کند تا هلیوم را به عناصر سنگین تر مانند کربن و اکسیژن تبدیل کند . ولی این واکنش ها انرژی زیادی مثل تبدیل هیدروژن به هلیم تولید نمی کنند . به همین سبب این ستاره که غول سرخ نامیده می شود نا پایدار است . سرانجام این ستاره زیر بار گرانش تحمل نمی کند و در یک انفجار نواختری یا نوایی پوسته خود را به دور می اندازد البته اگر اگر ستاره جرمی بیش از سه برابر خورشید داشته باشد در یک انفجار ابرنواختری یا سوپرنوایی از بند حفاظ گازی خود رها می شود . این انفجار به طرز باورنکردنی درخشان و تابناک است به طوری که ممکن است روشنایی آن 100 میلیون برابر خورشید باشد البته آن بسیار کم است و فقط برای روزها و یا ماه های کمی قابل رؤیت است . این انفجار یکی از نادرترین واقعه های جالب نجومی است .
در این انفجار نهیب تنها چیزی که امکان دارد باقی بماند هسته ی ستاره است . در ستاره ای همچون خورشید هسته باقیمانده که تقریبا" نصف جرمش را تشکیل می دهد تا پس از انفجار تا مرز 7 ^ 10 متر فشرده می شود در این شرایط براساس رابطه لوئی دوبروی انرژی جنبشی الکترون ها افزایش می یابد و برای آنها فضار ایجاد می کند ولی نیروی این فشار به حدی نیست که بتواند بر اوربیتال آنها بر گرداگرد هسته غلبه یابد کند ولی تنها کاری که می کند آنها را تا یک صدم شعاع اتمی خود فشرده می کنند . در این صورت این ستاره فشرده گرانش قابل توجهی دارد برای درک بهتر آن خورشیدی را در نظر بگیرید که در این شعاع اندک فشرده شده باشد . در این وضعیت چگالی این جسم بسیار زیاد است به طوری که جرم یک قاشق چایخوری از آن همانند جرم یک کامیون 18 چرخ در روی زمین است این جسم یک کوتوله سفید نامیده می شود اگر یک پرتو نور از کنار یکی از آنها به جرم 30 ^ 10 × 1.99 بگذرد در مسیرش چهار ساعت و یک دقیقه ( واحد درجه ) انحنا ایجاد می شود . حال اگرهسته ی باقیمانده پس ا انفجار 1 تا 1.5 (حد چاندرا اسکر برای کوتوله سفید ) برابر خورشید جرم داشته باشد وضعیت کاملا" فرق می کند . در نوع از ستاره ها فوریزی حاصل از گرانش آن قدر ادامه می یابد که فشار الکترون ها قادر به مقابله با آنها نیست . در این شرایط بغرنج الکترون ها از اوربیتال های خود خارج شده و جذب پروتون ها می شوند در نتیجه نوترون ها زاده می شود . اگر بخواهیم کمی دقیق تر بررسی کنیم نوترون ها بر اثر متحد شدن الکترون ها و پروتون ها و هم چنین اثر معکوس فروپاشی بتا شکل می گیرند .
در هنگام فضایی در اختیار نوترون ها قرار گرفته است که در جای خود فشرده شوند . این ها به حدی فشرده می شوند که تقریبا" در هر مترمکعب از ماده این ستاره 17 ^ 10 کیلو گرم جرم دارد . این فشرده گی به حدی زیادی است که به ذهن هیچ انسانی خطور نمی کند یک قاشق چای خوری از ماده ی آنها تقریبا" به اندازه ی یک میلیون کامیون 18 چرخ در روی زمین جرم خواهد داشت . این ستارگان در هنگام تولد دمای بالایی دارند و تابش می کنند اماپس از گذشت زمان به شدت دمایشان کاهش یافته و در نتیجه سرد می شوند .
این ستاره ها اغلب به صورت پالسار دیده می شوند . پالسار نوعی ستاره ی نوترونی است با این تفاوت که دارای اسپین و چرخش است . این ها در حوضه ی پرتوی ایکس اشعه ساتع می کنند که به صورت مخروطی سو سو زنان مشاهده می شود این چرخش ها باعث می شود که میدان مغناطیسی آن نیز به موزات آن دارای اسپین باشد . موضوع جالب دیگر در زمینه ی این ستاره های نوترونی حرکت سریع آنها در فضا است . دلیل این حرکت را با توجه به ابرنواختری که ستاره در آن زاده شده است توجه می کنند و می گویند که ضربات انفجار اولیه در همان یک ثانیه ی نخست است به آنها سرعت می دهد که تقریبا" 500 کیلومتر بر ثانیه به سرعت آنها می افزاید این مطلب در سال 2003 توسط دانشمندان آمریکایی و آلمانی تأیید شد .
 

best eng

عضو جدید
نسبیت عام

general relativity

اينشتين در نوجوانى علاقه چندانى به تحصيل نداشت. پدرش از خواندن گزارش هايى كه آموزگاران درباره پسرش مى فرستادند، رنج مى برد. گزارش ها حاكى از آن بودند كه آلبرت شاگردى كندذهن، غيرمعاشرتى و گوشه گير است. در مدرسه او را «باباى كند ذهن » لقب داده بودند. او در ۱۵ سالگى ترك تحصيل كرد، در حالى كه بعدها به خاطر تحقيقاتش جايزه نوبل گرفت

شايد شما نيز اين جملات را خوانده يا شنيده باشيد و شايد اين پرسش نيز ذهن شما را به خود مشغول كرده باشد كه چگونه ممكن است شاگردى كه از تحصيل و مدرسه فرارى بوده است، برنده جايزه نوبل و به عقيده برخى از دانشمندان، بزرگ ترين دانشمندى شود كه تاكنون چشم به جهان گشوده است؟
ولی چه باید کرد ؟ درست 27 سال همان بابای کند ذهن بزرگترین جایزه ی علمی جهان را در رشته فیزیک برای کارش در زمینه ی اثر فوتوالکتریک دریافت کرد . شاید بتوان گفت که او در سال در 1915 با ارائه ی نسبیت عام بزرگترین انقلاب فکری را در تمام دوران فیزیک برپا کرد . زمانی که در سال 1919 نظریه ی او یعنی نسبیت عام بعینه مشاهده شد او به شهرت جهانی رسید به گفته ی خودش تنها چیزی او را به این سمت کشاند نیروی جالبی بود که بروی عقربه های قطب نمایی که پدرش در کودکی برای او خریده بود تأثیر می گذاشت بعد از این مقدمه ی نسبتا" طولانی بد نیست به نسبیت عام بپردازیم .
نسبیت عام حاصل پنج سال تلاش بی وقفه اینشتین بود . اینشتین در نسبیت عام از هندسه نا اقلیدسی کمک گرفت . اما چگونه ؟ لازم است نیم نگاهی به این هنسه بیندازیم .
همانطور که می دانیم هندسه اقلیدسی هندسه صفحه نیز نامیده می شود . این هندسه دارای پنج اصل است که تمام وضعیات خطوط در صفحه با توجه به آن مشخص می شود . این پنج اصل به شرح زیر هستند .
ـــ اصل اول - از هر نقطه مي توان خط مستقيمي به هر نقطه ي ديگر كشيد .
ـــ اصل دوم - هر پاره خط مستقيم را مي توان روي همان خط به طور نامحدود امتداد داد
ــ اصل سوم - مي توان دايره اي با هر نقطه دلخواه به عنوان مركز آن و با شعاعي مساوي هر پاره خط رسم كرد
ــ اصل چهارم - همه ي زواياي قائمه با هم مساوي اند
ـــ اصل پنجم - از يك نقطه خارج يك خط، يك خط و و تنها يك خط مي توان موازي با خط مفروض رسم كرد
گروهی از ریاضیادان ها بروی اصل موضوعه ی پنجم شک کردند و با کار بروی این اصل توانستند در شرایطی خاص آن را نقض کنند البته گفتنی است که دانشمندانی چون خیام و پدر بویوئی بروی این اصل بسیار کار کردند ولی به نتیجه مطلوب دست نیافتند .
ولی سرانجام یانوش بویوئی و لباچوفسکی برای نخستین بار یکی از انوع این هندسه را کشف کردند . از این نوع هندسه انواع گوناگونی وجود دارد که همه ی آنها در اصل موضوعه ی پنجم با هم اختلاف آشکاری دارند . با توجه به اصل دوم می توانیم دو حالت غیر از این حالت را بیان کنیم حالت اول این است که بگوئیم که ما قادریم بیش از یک خط موازی رسم کنیم این همان کاری است که بویوئی و لباچوفسکی انجام دادند این هندسه ، هندسه هذلولی نیز نامیده می شود که در آن مجموع زوایای درونی یک مثلث کمتر از 180 است و نسبت محیط به قطر بیشتر از عدد پی است . انحنای خط در این حالت منفی است .
هندسه ی هذلولی برای کار در نسبیت عام به کار نیامد پس آلبرت اینشتین از هندسه ی بیضوی که در سال 1854 توسط فردریک ریمان تدوین شده بود استفاده کرد . این هندسه در اصل پنجم دقیقا" خلاف هندسه ی هذلولی است . یعنی این هندسه به وضوح می گوید از یک نقطه خارج یک خط هرگز نمی توان خطی موازی با آن رسم کرد . این هندسه به طور مطلق و کامل به کار نسبیت عام می آمد . البته او تبصره ای در اصل دوم نیز گذاشت و گفت اگر نا متناهی بودن آن را به بی کرانگی بودن تبدیل کنیم در این صورت این هندسه به وجود می آید . زیرا در این هندسه اگر بروی سطح مورد نظر هر چقدر هم که بی کران باشد حرکت کنیم ( بر خط راست ) سرانجام می توانیم به نقطه ی اول بازگردیم . در این هندسه مجموع زوایای درونی مثلث بیشتر از 180 درجه است و انحنا خط مثبت است . همچنین باید بدانیم که نباید برای هر کدام درستی یا نادرستی تعیین کنیم زیرا هر کدام چه هندسه اقلیدسی و چه نا اقلیدسی با توجه به انحنا خط در جایی خاص کاربرد دارند .




در تصویر بالا می توانید سطوح مختلف و همچنین مثلث ها را بر سطح آنها می بینید
آلبرت پیش از این از معادلات خود اصل هم ارزی را نتیجه گرفته بود که بیان می کرد که اگر شما در اتاقکی از بالای ارتفاعی رها شوید گرانشی را نمی توانید اندازه بگرید حتی اگر دقیق ترین آزمایش ها را نیز انجام دهید . اینشتین با کار بروی متریک ریمان در فضا – زمان دریافت این موضوع به این سادگی هم نیست . به همین دلیل سعی کرد تا هندسه نااقلیدسی خاصه هندسه ی نا اقلیدسی بیضوی را از دوست ریاضیدانش مارسل گرسمان فرا بگیرد . اینشتین هندسه بیضوی را از گرسمان فرا گرفت و با توجه با اصل هم ارزی و حل معادلات بسیار پیچیده ای که معروف ترین آنها معادله ی میدانی است به این نتیجه است که فضا – زمان مسطح نیست بلکه خمیده است و می تواند خمیده شود . با توجه به این موضوع شرح داده می شود که فضا – زمان به وسیله ماده و انرژی پیچ و تاب داده می شود و یا می پیچد. ما واقعا" می توانیم این پیچ و تاب را مشاهده کنیم . محصول جرم خورشید این است که نور و امواج رادیویی هنگام عبور از کنارش مسیرشان کمی خمیده می شود . علت این پدیدار شدن موقعیت ستاره یا چشمه های شبه اختری است که باعث تغییرمکان کم آن می شود .زمانی که خورشید بین زمین و منبع رادیویی قرار می گیرد تغییر مکان بسیار کم است و در حدود یک هزارم درجه است ، در حکم حرکت یک اینچ در مسافت یک مایل . با وجود این اندازه مذکور می تواند به دقت اندازه گیری شود . این امر با پیشگویی نسبیت عام تطابق دارد . این مدرکی بر پایه آزمایش است که فضا – زمان خمیده می شود . مقدار این خمیدگی در همسایگی ما بسیار کم است زیرا میدان گرانشی خورشید کم دوام است . هرچند برای ما روشن است که این رویداد در تمام میدان های گرانشی قوی نیز رخ می دهد ، برای مثال در بیگ بنگ یا در سیاهچاله ها برای درک بهتر این مطلب سطحی ارتجاعی را در نظر بگیرید که اگر جرمی بر روی آن قرار گیرد خمیده می شود به به پائین می رود . شاید این سؤال پیش بیاید که چرا انرژی ؟ پاسخ این است که باید باز هم با اصل هم ارزی جرم و انرژی اینشتین که در فصل اول بیان شد مراجعه کنیم . گفتنی است که این فرمول بر اساس ارزیابی هایی که اخیرا" انجام شده است این فرمول تنها 0.0000004 خطا دارد که میزان بسیار ناچیزی است . این نتایج از تحقیق بر روی اتم های سولفور و سیلیکون به دست آمده است .



همانطور می دانیم نسبیت عام صرفا" یک نظریه برای شرح گرانش است . اینشتین گرانش را با توجه به این خمیدگی در فضا – زمان به صورت جالبی شرح می دهد . او تعریف کلیشه ای که از گذشته برای گرانش باب شده بود را کنار گذاشت و آن را چنین عنوان کرد .
گرانش اثر هندسی جرم بر فضا – زمان اطراف خود است
این بدان معنا است که هر میزان گرانش به خمیده شدن آن توسط جرم بستگی دارد . همانطور که می دانیم هر چه جرم جسمی بیشتر باشد انحنایی که در بافت فضا – زمان ایجاد می کند بیشتر خواهد بود در نتیجه گرانش آن نیز بیشتر خواهد بود . این بارها آزموده شده است و مورد تأئید دانشمندان واقع شده است . نمونه ای بارز از آن در سال 1919 بود . زمانی که یک کسوف کامل روی داده بود نور یک ستاره از کنار خورشید عبور کرد و حدود یک هزارم درجه تغییر مسیر داد . اگر به یاد داشته باشید در فصل اول زمانی که کوتوله های سفید و ستاره های نوترونی به بحث گزاردیم در لا به لای صحبت هایمان از انحنای نور در هنگام عبور از کنار آنها سخن گفتیم . دلیل این خمیدگی را اکنون شرح داده ایم تا قابل درک باشد . ممکن است این سؤال برای شما پیش بیاید که چرا یک ستاره ی نوترونی با جرم خورشید در مسیر حرکت نور 46 درجه انحنا ایجاد می کند ولی خود خورشید در حدود یک هزارم درجه ؟ پاسخ را با توجه به نسبیت عام می توان شرح داد . فرمولی که در نسبیت عام برای محاسبه ی این انحنا وجود دارد به دو کمیت جرم و شعاع جسم بستگی دارد البته با اولی رابطه ی مستقیم و با دومی رابطه ی عکس دارد . همچنین در چند ماه گذشته تلسکوپ جادویی هابل جلوه ای بسیار زیبا از این اصل نسبیت را به جهانیان نمایند . اینشتین در سال 1936 پیش بینی کرد که هرگاه نور اجرام دور دست از کنار اجرام عظیم کیهانی گذر کند براثر انحنای ایجاد شده آن اجسام در فضا – زمان حلقه ای کامل به وجود می آید که حلقه ی اینشتین نامیده می شود . هابل این صحنه را به جهانیان نشان داد . این اجرام پر جرم دو کار انجام می دهند 1- همانند یک عدسی عمل می کنند و تصویر را بزرگتر جلوه می دهند 2- نور اجرام دوردست را که نور مذکور از آن می آید را تشدید می کند و ما می توانیم اجرام کم نور را با این راه کار مشاهده کنیم . این پدیده ی جالب همگرایی گرانشی نا گرفته است . هابل برای نمایندن این ها 19 منبع را زیر نظر داشته است و تنها 3 تا از آنها در طیف نور مرئی پرتو افکنی می کرده اند .





تصویر بالا توسط تلسکوپ فضایی هابل از کهکشان بیضوی چشم گاو گرفته شده است که یکی از زیباترین جلو گاه های کیهانی است . این کهکشان همچون یک عدسی غول پیکر عمل کرده است .

ممکن است در ذهن شما این موضوع تداعی شود درک این موضوع ازدرک بعضی از موضوع های نسبیت خاص بسیار ساده تر است ، پس چرا از دشوار بودن آن سخن می گویند ؟ اگر در این اندیشه اید می توان گفت که سخت در اشتباه هستید زیرا اگر نمونه ای از ریاضیات آن را ببینید از نظر خود تعجب خواهید کرد . در این مقاله نیز به دلیل وقت بری بسیار زیاد از آن صرف نظر می کنیم .
اما از جمله اصول دیگری از نسبیت عام که در شرح قسمتی از خواص سیاهچاله به ما کمک می کند این است که ساعت ها در میدان های گرانشی کندتر عمل می کنند . البته نسبت به محیطی که در آن میدانی نباشد هرچند که این هم سخن چندان درستی نیست زیرا با اصل عدم قطعیت هایزنبرگ تناقض دارد ، در این رابطه در بخش بعد بحث خواهیم کرد . برای مثال اگر یک ساعت در فاصله ی 100 کیلومتری از سطح یک کوتوله سفید به جرم 20 ^ 10 × 4 و شعاع 5000 کیلومتر قرار داشته باشد و ما زمان را برای یک ساعت که خارج از میدان است 1 ثانیه اندازه گیری کنیم آنگاه زمان برای ساعتی که در میدان است زمان به مقدار 0.57 ثانیه گذشته است . حال هر چقدر این اندک تر باشد نشان گر آن است که یا جرم جسم بیشتر بوده است یا اینکه شعاعش کمتر بوده است در حالی که ممکن است هر دو حالت نیز با هم رخ دهد . برای درک بهتر اگر بخواهیم جسمی را با همین جرم ولی با شعاع 10 کیلومتر مثال بزنیم ( این جسم یک کوتوله ی سفید است ) زمان سپری شده برای او به اندازه ی ... 0.0242424 که در واقع این ادامه پیدا می کند و بسیار کوچکتر از عدد محاسبه شده برای کوتوله سفید است .
اگر بخواهیم به یکی دیگر از اصول نسبیت عام نگاهی بیندازیم بد نیست به جا به جایی های طیفی در میدان های گرانشی بیندازیم . همانطور که می دانیم هر طیف الکترومغناطیسی دارای طول موج خاصی است . هر چه طول موج یک موج کمتر باشد در این صورت انژی بیشتری را با خود حمل می کند . انرژی این موج طبق رابطه ی معروف زیر محاسبه می شود .

E = hf

در این رابطه ی بسیار ساده E انرژی فوتون موج الکترومغناطیسی است . همچنین h در این رابطه معروف به ثابت پلانک است که برابر

34- ^ 10 × 6.67 است . در حالی که f نقش فرکانس یا بسامد موج را بازی می کند . انرژی یک موج به طول فرکانس آن بستگی دارد هر چه فرکانس بیشتر باشد انرژی فوتون موج نیز بیشتر خواهد بود که با این فرکانس خود تحت الشعاع طول موج قرار می گیرد . در تصویر محدوده طول موج ها را از پرتوهای گاما تا پرتوهای رادیویی را مشاهده می کنید .

برای مثال یک فوتون گاما که پر انرژی ترین موج الکترومغناطیسی است تقریبا" 17- ^ 10 × 20.01 ژول انرژی دارد .




ما در بحث در این رابطه با طیف مرئی کار می کنیم زیرا طیف های دیگر برای ما قابل مشاهده نیستند . در نسبیت عام می خوانیم که اگر فوتونی در حال حرکت باشد و تحت تأثیر یک میدان گرانشی قرار گیرد به سمت آبی جا به جا می شود در واقع طول موج آن کاهش می یابد و در نتیجه فرکانسش افزایش می یابد به این تغییر جا به جایی به سمت آبی یا بلو شیفت می گویند . اگر یک فوتون در حال گریز از یک میدان گرانشی باشد آنگاه به سمت قرمز جا به جا می شود و فرکانسش کاهش می یابد . به این پدیده رد شیفت نیز گفته می شود . البته این حرف ها در محدوده ی طول موج مرئی است . همچنین در طول موج های دیگر نیز اینگونه هست ولی ما قدرت دید آنها را نداریم . برای مثال اگر یک فوتون قرمز با طول موج 700 نانومتر به درون میدان گرانشی یک جسم با جرم 20 ^ 10 × 2 و شعاع 10 کیلومتر سقوط کند طول موج برابر 8- ^ 10 × 2 خواهد رسید در واقع در این شرایط فرکانس آن افزایش یافته است . در واقع این سخن را در رابطه با میدان خود زمین این گونه بیان می شود که اگر پرتوی نوری از زمین به طرف بالا فرستاده شود طول موجش بیشتر می شود زیرا در حال گریز از یک میدان گرانشی است . هرچند که این میدان نسبت به سایر اجسام سماوی ناچیز به نظر می رسد . از این خاصیت در شرح دادن وضعیت نور در اطراف یک سیاهچاله بهره خواهیم گرفت .


تا کنون اثر هندسی جرم بر فضا – زمان و تأثیر میدان گرانشی را بر ساعت و همچنین جا به جایی های طیفی را هر چند مختصر مورد بررسی قرار دادیم . حال به محدوده ی دیگری از کاربردهای نسبیت عام می پردازیم . در قسمتی از نسبیت عام می خوانیم که اگر خط کشی در میدان گرانشی یک جسم قرار گیرد آنگاه دیگر این خط کش طولش برابر طول اولیه اش نیست بلکه طولش کوتاه تر می شود . این اصل در نسبیت خاص نیز به چشم می خورد اما در آنجا در رابطه با میدان های گرانشی نیست بلکه در رابطه با سرعت های بالا به بحث می پردازد .
اما آیا واقعا" اینگونه است ؟ یکی از جاهایی از نسبیت عام که اینشتین را به شک در رابطه با هندسه ی اقلیدسی وا داشت همین جا بود . جایی که او فهمید به وسیله هندسه خط و صفحه نمی تواند محیط یک دایره را به عینه اندازه بگیرد و از واقعی بودن آن مطمئن شود . در این زمان بود که از هندسه ریمانی بهره گرفت و به این نتایج جالب در نسبیت عام دست یافت و اسم خود را برای همیشه در تاریخ علم و ذهن علم دوستان جاودانه کرد . این اصل نسبیت عام به ما می گوید که اگر خط کشی در فاصله 100 کیلومتری از سطح یک ستاره نوترونی باشد کوتاه تر از خط کشی است که در فاصله ی 10 کیلومتری از سطح آن است . اگر بخواهیم اختلاف یک خط کش یک متری را در این ارتفاعات ببینیم در صورتی که در میدان یک ستاره ی نوترونی با جرم 20 ^ 10 × 4 و شعاع 10 قرار داشته باشند به این صورت خواهند بود که خط کشی که در ارتفاع 10 کیلومتری قرار دارد 71 سانتی متر خواهد یعنی کوتاه تر است خط کس قبلی است .



این ها اصولی از نسبیت عام بودند که ما در فصلبعد از آنها استفاده خواهیم کرد اما اگر بخواهیم مهمترین دستاورد نسبیت عام را شرحدهیم توجیه مدار عطارد است . اما مشکل چه بود ؟
با توجه به قوانین مکانیک کلاسیک نیوتنی می توانستیم مدار تمامی سیارات منظومه شمسی را به خوبی شرح دهیم به جز سیاره عطارد . نسبیت عام با انقلابی که در فیزیک بر پا کرد هم توانست مدار سیارات دیگر را بسیار خوب شرح دهد و هم توانست اشکال مدار عطارد را بر طرف کند . بیش از صد سال بود که منجمان پیش از اینشتن متوجه شده بودند که حضیض سیاره ی عطارد تغییر می کند اما به وسیله قوانین نیوتن قابلیت توجه آن وجود نداشت . اما نسبیت عام آن را توجه کرد . همانطور که در قسمت اول گفته شد فضا – زمان بر اثر جرم خمیده می شود . خمیدگی که بر اثر جرم خورشید در فضا – زمان پدید آمده است به تدریج موجب می شود حضیض سیاره از خود چرخشی نشان دهد و به طور مداوم جا به جا شود . این یکی از بزرگترین دستاوردهای نسبیت عام بود .
 

infrequent

عضو جدید
کاربر ممتاز
سیاهچاله به زبان ساده

سیاهچاله به زبان ساده

اگر تمام کره زمین تا 0.9 سانتیمتر فشرده شود به یک سیاهچاله تبدیل می شود.



فرضیه سیاهچاله حتی در میان شگفت انگیزترین پیشرفت های اخیر اختر فیزیك نظری موقعیت برجسته ای دارد. قرن بیستم زمانی بود كه كشفیات خارق العاده در فیزیك و اختر شناسی همواره به كشفیات دیگری كه خارق العاده تر بودند، منجر گردیده است. در عین حال آنها دوره دیگری را در گسترش علوم طبیعی مشخص می سازند. تعداد كمی از این كشفیات از نظر جذابیت با فرضیه سیاهچاله‌ها قابل قیاس هستند. چنین عجیب به نظر می آید كه در فضا سوراخ و در سوراخ سیاهچاله ها وجود داشته باشند ! طبق نظریه نسبیت عام ، نیروهای گرانشی از خواص فضا هستند. مسئله قابل توجه فقط این نیست كه جسمی در فضا وجود دارد بلكه این جسم مشخص كننده هندسه فضای اطرافش می باشد. انیشتین در این مورد می گوید: همیشه عقیده بر این بوده اگر تمام ماده جهان معلوم شود، زمان و فضا باقی می مانند، در حالی كه نظریه نسبیت تاكید می كند كه زمان و فضا نیز همراه با ماده نابود می گردند. بنابراین ، جرم با فضا ارتباط دارد. هر جسمی باعث می شود كه فضای اطرافش انحنا پیدا كند. ما به سختی متوجه چنین انحنایی در زندگی خود می شویم، زیرا با جرم های نسبتا كوچكی سروكار داریم. ولی در میدان های گرانشی بسیار قوی ، مقدار انحنا ممكن است قابل توجه باشد. تعدادی از رویدادهایی كه اخیرا در فضا مشاهده شده اند، نشان می دهند كه احتمال تمركز مقادیر جرم در بخش های كوچكی از فضا وجود دارد. اگر ماده ای با جرم معین به اندازه ای متراكم شود كه به حجم كوچكی تبدیل گردد و آن حجم برای چنین ماده‌ای بحرانی باشد، ماده تحت تاثیر گرانش خود شروع به انقباض می نماید. با انقباض بیشتر ماده ، فاجعه گرانشی گسترش می‌یابد و آنچه كه فرو ریختن گرانشی نامیده می شود، آغاز می گردد. تمركز ماده در این فرآیند افزایش می یابد و طبق نظریه نسبیت ، انحنای فضا نیز به تدریج بیشتر می گردد.



سرانجام لحظه ای فرا می رسد كه هیچ پرتوئی از نور ، ذره و نشانه فیزیكی دیگر نمی تواند از این قسمت كه دچار فروریختن جرم شده ، خارج گردد. این جسم به عنوان سیاهچاله شناخته شده است. شعاع جسم در حال فرو ریختن كه به یك سیاهچاله تبدیل می گردد، شعاع گرانشی نامیده می شود. این شعاع برای جرم خورشید سه كیلومتر و برای جرم زمین 9/0 سانتی متر است.



اگر خورشید در اثر انقباض به كره‌ای با شعاع سه كیلومتر تبدیل شود، به صورت یك سیاهچاله در می آید. گرانش در سطح جسمی كه شعاعش با شعاع گرانشی جرم آن برابر می باشد، فوق‌العاده شدید است. برای غلبه بر نیروی گرانشی لازم است سرعت فرار افزایش یابد، كه مقدار آن بیشتر از سرعت نور می باشد. طبق نظریه خاص نسبیت كه اكنون قابل قبول است، در جهان هیچ چیز نمی تواند با سرعت بیشتر از سرعت نور حركت كند. به همین دلیل سیاهچاله ها اجازه نمی دهند هر چیزی از آنها خارج گردد. از سوی دیگر ، سیاهچاله می تواند ماده را از فضای اطراف به درون خود ببلعد و بزرگتر شود. برای توضیح تمام پدیده هایی كه مربوط به سیاهچاله می شوند، فرضیه عام نسبیت لازم می باشد. بر اساس این نظریه ، گذشت زمان در میدان گرانشی قوی آهسته می باشد. برای ناظری كه در خارج سیاهچاله قرار دارد، افتادن یك جسم به درون سیاهچاله مدت طولانی متوقف می گردد. در چنین حالتی ناظر فرضی در ارتبط با عمل انقباض واقعا تصویر كاملا متفاوتی را مشاهده خواهد نمود. ناظر در حالی كه در ظرف مدت محدودی به شعاع گرانشی می رسد، سقوطش ادامه می یابد، تا آنكه به مركز سیاهچاله برسد. ماده در حال فروریختن ، پس از گذشتن از شعاع گرانش به انقباض ادامه می دهد. طبق اختر فیزیك نظری جدید ممكن است سیاهچاله ها مرحله پایانی زندگی ستارگان جسیم باشند. مادامی كه یك منبع انرژی در ناحیه مركزی ستاره فعالیت می نماید، درجات حرارت بالا باعث انبساط گاز و جدا شدن لایه های بالائی آن می شود. در عین حال ، نیروی گرانشی عظیم ستاره این لایه ها را به سوی مركز می كشاند. پس از آن كه سوخت تامین كننده واكنش‌های هسته‌ای به مصرف رسید، درجه حرارت در ناحیه مركزی ستاره به تدریج پایین می آید. در این مرحله تعادل ستاره به هم می خورد و ستاره تحت تاثیر نیروی گرانشی خود منقبض می گردد. تكامل و تغییر بیشتر آن به جرمش بستگی دارد. طبق محاسبات اگر جرم ستاره سه تا پنج برابر جرم خورشید باشد، مرحله پایانی انقباض آن ممكن است باعث فروریختن گرانشی و تشكیل سیاهچاله گردد


منبع
 

کومولوس

عضو جدید
[h=1]نخستین عکس از افق رویداد سیاهچاله در اوایل سال ۲۰۱۹[/h]


بیگ بنگ: سیاهچاله‌ها اسرار آمیزترین اجرام در کیهان می باشند، علی رغم این حقیقت که سیاهچاله‌ها در مرکز اکثر کهکشانها مخفی شدند، حقیقت این است که تاکنون هیچکس قادر به مشاهدۀ مستقیم این اجرام نبوده و این به دلیل تیرگی فوق العاده‌اشان است که حتی نور قادر به فرار از گرانش عظیم آنها نیست و به همین دلیل عکس‌برداری از آنها تاکنون امکان پذیر نبوده است، اما شبکه‌ای از تلسکوپ‌ها به نام تلسکوپ افق رویداد این کار را عملی می کنند. طبق مکاتبات جدید نخستین عکس واقعی از سیاهچاله در اوایل سال ۲۰۱۹ منتشر می شود.




ستارگان در مرکز کهکشان راه شیری با سرعتی حدود ۱۰۰ هزار کلیومتر در ساعت چرخش می‌کنند و این بدان معناست که در مرکز کهکشان، ماده‌ای بسیار چگال و با جرمی حدود ۴ میلیون برابر جرم خورشید وجود دارد. تنها اطلاعاتی که می‌توانیم از مرکز کهکشان به دست آوریم، یک منبع امواج رادیویی است که از جرمی بنام کمان-ای*(Sagittarius A) نام دارد. این امواج رادیویی بسیار ریز و دارای طول موجی کمتر از میلیمتر است و احتمالا به خاطر خروج گازهای داغی که به داخل سیاهچاله فرو می‌روند ایجاد می‌شود. این نقطه «عدم بازگشت» در سیاهچاله که سرعت گریز در آن بالاتر از سرعت نور است، «افق رویداد» نامیده می شود. تلسکوپ افق رویداد(EHT) هم در صدد عکسبرداری از این افق می باشد.


این تلسکوپ در واقع مجموعه‌ای از رادیوتلسکوپ‌های سراسر زمین است که بصورت شبکه‌ای جهانی عمل می کند. طبق مکاتبه‌ای که یکی از دوستان و همراهان بیگ بنگ با تیم تلسکوپ افق رویداد انجام داده، ما نخستین تصویر واقعی و با کیفیت از یک سیاهچاله را در اوایل سال ۲۰۱۹ مشاهده خواهیم کرد.
 
Similar threads
Thread starter عنوان تالار پاسخ ها تاریخ
leila sh سياهچاله چيست؟ اخترفیزیک 1

Similar threads

بالا